H Control for Energy Dispatch in Autonomous Nanogrid With Communication Delays

Youngwoo Lee, Yonghao Gui, Wonhee Kim

Research output: Contribution to journalArticlepeer-review

Abstract

This paper proposes an optimal controller and estimator for energy dispatch to balance the power supply and demand considering communication delays. The proposed algorithm involves modeling an autonomous nanogrid (ANG) consisting of distributed energy resources, energy storage systems, loads, an H controller with a reference power modulation technique, and a state estimator. The ANG was developed to express the dynamic supply-demand energy balance of a nanogird system. Reference power modulation was designed to generate the desired ESS power based on the imbalanced energy. Random communication delays were modeled using a stochastic variable satisfying the Bernoulli random binary distribution. The optimal H controller and estimator were developed using a linear matrix inequality approach to exponentially stabilize the closed-loop system. Simulations were performed using real daily demand forecasts obtained from the Korea Meteorological Administration to demonstrate the effectiveness of the proposed real-time optimization algorithm.

Original languageEnglish
Pages (from-to)56492-56502
Number of pages11
JournalIEEE Access
Volume12
DOIs
StatePublished - 2024

Keywords

  • Autonomous nanogrid system
  • H control
  • communication delay
  • distributed energy resource
  • energy dispatch
  • energy storage system

Fingerprint

Dive into the research topics of 'H Control for Energy Dispatch in Autonomous Nanogrid With Communication Delays'. Together they form a unique fingerprint.

Cite this