Abstract
Fundamental understanding of the macroscopic properties of polymer nanocomposites (PNCs) remains difficult due to the complex interplay of microscopic dynamics and structure, namely interfacial layer relaxations and three-dimensional nanoparticle (NP) arrangements. The effect of surface modification by alkyl methoxysilanes at different grafting densities has been studied in PNCs made of poly(2-vinylpyridine) and spherical 20 nm silica NPs. The segmental dynamics has been probed by broadband dielectric spectroscopy and the filler structure by small-angle X-ray scattering and reverse Monte Carlo simulations. By combining the particle configurations with the interfacial layer properties, it is shown how surface modification tunes the attractive polymer-particle interactions: bare NPs slow down the polymer interfacial layer dynamics over a thickness of ca. 5 nm, while grafting screens these interactions. Our analysis of interparticle spacings and segmental dynamics provides unprecedented insights into the effect of surface modification on the main characteristics of PNCs: particle interactions and polymer interfacial layers.
Original language | English |
---|---|
Pages (from-to) | 7496-7510 |
Number of pages | 15 |
Journal | ACS Applied Materials and Interfaces |
Volume | 15 |
Issue number | 5 |
DOIs | |
State | Published - Feb 8 2023 |
Funding
This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. A.-C.G. and J.O. are thankful for support by the ANR NANODYN project, Grant ANR-14-CE22-0001-01 of the French Agence Nationale de la Recherche.
Keywords
- colloidal silica
- interfacial gradient
- interfacial layer thickness
- interparticle spacing distribution
- poly(2-vinylpyridine)
- segmental dynamics
- silane
- surface modification