How to design a focusing guide: The large moderator case

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

As continuously shaped super-mirrors are becoming available, the conceptual design of focusing guides should explore a wider range of possibilities to accomplish an efficient neutron beam extraction. Starting from a desired phase-space volume at the sample position and using an upstream ray-tracing approach, the acceptance diagram of any focusing guide can be calculated at the moderator position. To ensure high brilliance transfer and homogeneous coverage, the acceptance diagram should be fully included in the neutron source emission phase-space volume. Following this idea, the guide system can be scaled into dimensionless geometric figures that convey performance limits for a desired cross-section reduction. Moreover, if we impose a monotonic increase of the reflection angle with divergence angle at the sample position, the shape of the mirror is analytically determined. This approach was applied in the design of a focusing guide for SNAP instrument at SNS, at ORNL, USA. The results of McStas simulations are presented with different options included. Our approach facilitates finding an optimal solution for connecting multiple guide pieces to avoid excessive losses and ensure a homogeneous phase space coverage.

Original languageEnglish
Pages (from-to)139-153
Number of pages15
JournalJournal of Neutron Research
Volume22
Issue number2-3
DOIs
StatePublished - 2020

Funding

1This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). *Corresponding author. E-mail: [email protected]. This research used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Keywords

  • Neutron optics
  • neutron guides
  • neutron instrumentation
  • neutron scattering
  • supermirrors

Fingerprint

Dive into the research topics of 'How to design a focusing guide: The large moderator case'. Together they form a unique fingerprint.

Cite this