TY - JOUR
T1 - How focussing on hydrogen bonding interactions in amino acids can miss the bigger picture
T2 - A high-pressure neutron powder diffraction study of ε-glycine
AU - Moggach, Stephen A.
AU - Marshall, William G.
AU - Rogers, David M.
AU - Parsons, Simon
N1 - Publisher Copyright:
© The Royal Society of Chemistry 2015.
PY - 2015/7/28
Y1 - 2015/7/28
N2 - The crystal structures of amino acids, which are composed of molecules in their zwitterionic tautomers, are usually interpreted in terms of strong NH⋯O hydrogen bond formation between the ammonium and carboxylate groups supported by weaker dispersion or CH⋯O interactions. This view of the factors which promote thermodynamic stability in the crystalline amino acids has been re-examined in two phases of glycine, the trigonal γ-form, which is the thermodynamically most stable form under ambient conditions, and the ε-form, which is generated from γ-glycine at high pressure. A combination of Hirshfeld surface analysis, periodic DFT, PIXEL and symmetry-adapted perturbation theory calculations indicates that the conventional interpretation of intermolecular interactions in crystalline amino acids phases fails to recognise the over-whelming significance of Coulombic attraction and repulsion. There are no intermolecular interactions in either phase that can plausibly be described as dispersion-based. The interaction energies of molecules connected by so-called CH⋯O H-bonds are far in excess of accepted values for such interactions. Of the 14 closest intermolecular contacts in both phases, six have destabilizing interaction energies: in γ-glycine a hydrogen bond with 'text-book' NH⋯O contact geometry is part of a destabilising molecule-molecule interaction. The relative stabilities of the phases are best understood not in terms of a series of stabilising atom-atom contacts, but rather as a balance between efficient filling of space in the high-pressure ε-phase, and more weakly repulsive electrostatic whole-molecule interactions in the γ-phase.
AB - The crystal structures of amino acids, which are composed of molecules in their zwitterionic tautomers, are usually interpreted in terms of strong NH⋯O hydrogen bond formation between the ammonium and carboxylate groups supported by weaker dispersion or CH⋯O interactions. This view of the factors which promote thermodynamic stability in the crystalline amino acids has been re-examined in two phases of glycine, the trigonal γ-form, which is the thermodynamically most stable form under ambient conditions, and the ε-form, which is generated from γ-glycine at high pressure. A combination of Hirshfeld surface analysis, periodic DFT, PIXEL and symmetry-adapted perturbation theory calculations indicates that the conventional interpretation of intermolecular interactions in crystalline amino acids phases fails to recognise the over-whelming significance of Coulombic attraction and repulsion. There are no intermolecular interactions in either phase that can plausibly be described as dispersion-based. The interaction energies of molecules connected by so-called CH⋯O H-bonds are far in excess of accepted values for such interactions. Of the 14 closest intermolecular contacts in both phases, six have destabilizing interaction energies: in γ-glycine a hydrogen bond with 'text-book' NH⋯O contact geometry is part of a destabilising molecule-molecule interaction. The relative stabilities of the phases are best understood not in terms of a series of stabilising atom-atom contacts, but rather as a balance between efficient filling of space in the high-pressure ε-phase, and more weakly repulsive electrostatic whole-molecule interactions in the γ-phase.
UR - http://www.scopus.com/inward/record.url?scp=84936862891&partnerID=8YFLogxK
U2 - 10.1039/c5ce00327j
DO - 10.1039/c5ce00327j
M3 - Article
AN - SCOPUS:84936862891
SN - 1466-8033
VL - 17
SP - 5315
EP - 5328
JO - CrystEngComm
JF - CrystEngComm
IS - 28
ER -