TY - JOUR
T1 - Hot giant fullerenes eject and capture C2 molecules
T2 - QM/MD simulations with constant density
AU - Saha, Biswajit
AU - Irle, Stephan
AU - Morokuma, Keiji
PY - 2011/11/24
Y1 - 2011/11/24
N2 - Quantum chemical molecular dynamics (QM/MD) simulations using periodic boundary conditions show that hot giant fullerene (GF) cages can both eject and capture C2 molecules dependent on the concentration of noncage carbons in the simulated system, and that the cage size can therefore both increase and decrease under high temperature conditions. The reaction mechanisms for C2 elimination and incorporation involve sp3 carbon defects and polygonal rings larger than hexagons, and are thus closely related to previously described mechanisms (Murry, R. L.; Strout, D. L.; Odom, G. K.; Scuseria, G. E. Nature1993, 366, 665). The atoms constituting the cage are gradually replaced by the two processes, suggesting that a fullerene cage during high-temperature synthesis is a dissipative structure in the sense of Ilya Prigogines theory of self-organization in nonequilibrium systems. Explicit inclusion of Lennard-Jones-type helium or argon noble gas atoms is found to increase the GF shrinking rate. Large GFs shrink at a greater rate than small GFs. The simulations suggest that in an idealized, closed system the fullerene cage size may grow to a dynamic equilibrium value that depends on initial cage size, temperature, pressure, and overall carbon concentration, whereas in an open system cage shrinking prevails when noncage carbon density decreases as a function of time.
AB - Quantum chemical molecular dynamics (QM/MD) simulations using periodic boundary conditions show that hot giant fullerene (GF) cages can both eject and capture C2 molecules dependent on the concentration of noncage carbons in the simulated system, and that the cage size can therefore both increase and decrease under high temperature conditions. The reaction mechanisms for C2 elimination and incorporation involve sp3 carbon defects and polygonal rings larger than hexagons, and are thus closely related to previously described mechanisms (Murry, R. L.; Strout, D. L.; Odom, G. K.; Scuseria, G. E. Nature1993, 366, 665). The atoms constituting the cage are gradually replaced by the two processes, suggesting that a fullerene cage during high-temperature synthesis is a dissipative structure in the sense of Ilya Prigogines theory of self-organization in nonequilibrium systems. Explicit inclusion of Lennard-Jones-type helium or argon noble gas atoms is found to increase the GF shrinking rate. Large GFs shrink at a greater rate than small GFs. The simulations suggest that in an idealized, closed system the fullerene cage size may grow to a dynamic equilibrium value that depends on initial cage size, temperature, pressure, and overall carbon concentration, whereas in an open system cage shrinking prevails when noncage carbon density decreases as a function of time.
UR - http://www.scopus.com/inward/record.url?scp=81755176086&partnerID=8YFLogxK
U2 - 10.1021/jp203614e
DO - 10.1021/jp203614e
M3 - Article
AN - SCOPUS:81755176086
SN - 1932-7447
VL - 115
SP - 22707
EP - 22716
JO - Journal of Physical Chemistry C
JF - Journal of Physical Chemistry C
IS - 46
ER -