Highly ordered silicon pillar arrays as platforms for planar chromatography

Teresa B. Kirchner, Nahla A. Hatab, Nickolay V. Lavrik, Michael J. Sepaniak

Research output: Contribution to journalArticlepeer-review

22 Scopus citations

Abstract

Unlike HPLC, there has been sparse advancement in the stationary phases used for planar chromatography. Nevertheless, modernization of planar chromatography platforms can further highlight the technique's ability to separate multiple samples simultaneously, utilize orthogonal separation formats, image (detect) separations without rigorous temporal demands, and its overall simplicity. This paper describes the fabrication and evaluation of ordered pillar arrays that are chemically modified for planar chromatography and inspected by fluorescence microscopy to detect solvent development and analyte bands (spots). Photolithography, in combination with anisotropic deep reactive ion etching, is used to produce uniform high aspect ratio silicon pillars. The pillar heights, diameters, and pitch variations are approximately 15-20 μm, 1-3 μm, and 2-6 μm, respectively, with the total pillar array size typically 1 cm × 3 cm. The arrays are imaged using scanning electron microscopy in order to measure the pillar diameter and pitch as well as analyze the pillar sidewalls after etching and stationary phase functionalization. These fluidic arrays will enable exploration of the impact on mass transport and chromatographic efficiency caused by altering the pillar array morphology. A C18 reverse stationary phase (RP), common RP solvents that are transported by traditional but uniquely rapid capillary flow, and Rhodamine 6G (R6G) as the preliminary analyte are used for this initial evaluation. The research presented in this article is aimed at understanding and overcoming the unique challenges in developing and utilizing ordered pillar arrays as a new platform for planar chromatography: focusing on fabrication of expansive arrays, studies of solvent transport, methods to create compatible sample spots, and an initial evaluation of band dispersion.

Original languageEnglish
Pages (from-to)11802-11808
Number of pages7
JournalAnalytical Chemistry
Volume85
Issue number24
DOIs
StatePublished - Dec 17 2013

Fingerprint

Dive into the research topics of 'Highly ordered silicon pillar arrays as platforms for planar chromatography'. Together they form a unique fingerprint.

Cite this