Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces

Chen Chen, Yijin Kang, Ziyang Huo, Zhongwei Zhu, Wenyu Huang, Huolin L. Xin, Joshua D. Snyder, Dongguo Li, Jeffrey A. Herron, Manos Mavrikakis, Miaofang Chi, Karren L. More, Yadong Li, Nenad M. Markovic, Gabor A. Somorjai, Peidong Yang, Vojislav R. Stamenkovic

Research output: Contribution to journalArticlepeer-review

2416 Scopus citations

Abstract

Control of structure at the atomic level can precisely and effectively tune catalytic properties of materials, enabling enhancement in both activity and durability. We synthesized a highly active and durable class of electrocatalysts by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals. The starting material, crystalline PtNi3 polyhedra, transforms in solution by interior erosion into Pt3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility. The edges of the Pt-rich PtNi3 polyhedra are maintained in the final Pt3Ni nanoframes. Both the interior and exterior catalytic surfaces of this open-framework structure are composed of the nanosegregated Pt-skin structure, which exhibits enhanced oxygen reduction reaction (ORR) activity. The Pt 3Ni nanoframe catalysts achieved a factor of 36 enhancement in mass activity and a factor of 22 enhancement in specific activity, respectively, for this reaction (relative to state-of-the-art platinum-carbon catalysts) during prolonged exposure to reaction conditions.

Original languageEnglish
Pages (from-to)1339-1343
Number of pages5
JournalScience
Volume343
Issue number6177
DOIs
StatePublished - 2014

Funding

FundersFunder number
U.S. Department of Energy

    Fingerprint

    Dive into the research topics of 'Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces'. Together they form a unique fingerprint.

    Cite this