Abstract
One-dimensional (1D) magnetic nanomaterials have attracted much attention recently because of their applications in magnetic recording and spintronics. Nevertheless, it remains a challenge to prepare free-standing magnetic nanowires in high yield. This Communication reports the successful high-yield synthesis of an interesting 1D ferromagnetic CoPt alloy by direct decomposition of platinum acetylacetonate and cobalt carbonyl compound in ethylenediamine solvent through a solvothermal reaction. The CoPt alloy nanowires obtained have a tunable diameter of 10-50 nm and a length along the longitudinal axis of up to several microns, depending on crystallization temperature and reaction time. A unique formation mechanism involving coarsening and ripening under solvothermal conditions was discovered. This research opens new opportunities in synthesizing nanomaterials through low-temperature solvothermal processes.
Original language | English |
---|---|
Pages (from-to) | 7528-7529 |
Number of pages | 2 |
Journal | Journal of the American Chemical Society |
Volume | 125 |
Issue number | 25 |
DOIs | |
State | Published - Jun 25 2003 |