High temperature performance of cast CF8C-Plus austenitic stainless steel

Philip J. Maziasz, Bruce A. Pint

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Covers and casings of small to medium size gas turbines, can be made from cast austenitic stainless steels, including grades such as CF8C, CF3M, or CF10M. Oak Ridge National Laboratory (ORNL) and Caterpillar have developed a new cast austenitic stainless steel, CF8C-Plus, that is a fully-austenitic stainless steel, based on additions of Mn and N to the standard Nb-stabilized CF8C steel grade. The Mn addition improves castability, as well as increasing the alloy solubility for N, and both Mn and N act synergistically to boost mechanical properties. CF8C-Plus steel has outstanding creep-resistance at 600°-900°C, which compares well with Ni-based superalloys like alloys X, 625, 617 and 230. CF8C-Plus also has very good fatigue and thermal fatigue resistance. It is used in the as-cast condition, with no additional heat-treatments. While commercial success for CF8C-Plus has been mainly for diesel exhaust components, this steel can also be considered for gasturbine and microturbine casings. The purpose of this paper is to demonstrate some of the mechanical properties and update the long-term creep-rupture data, and to present new data on the high-temperature oxidation behavior of these materials, particularly in the presence of water vapor.

Original languageEnglish
Title of host publicationASME Turbo Expo 2010
Subtitle of host publicationPower for Land, Sea, and Air, GT 2010
Pages997-1003
Number of pages7
DOIs
StatePublished - 2010
EventASME Turbo Expo 2010: Power for Land, Sea, and Air, GT 2010 - Glasgow, United Kingdom
Duration: Jun 14 2010Jun 18 2010

Publication series

NameProceedings of the ASME Turbo Expo
Volume1

Conference

ConferenceASME Turbo Expo 2010: Power for Land, Sea, and Air, GT 2010
Country/TerritoryUnited Kingdom
CityGlasgow
Period06/14/1006/18/10

Fingerprint

Dive into the research topics of 'High temperature performance of cast CF8C-Plus austenitic stainless steel'. Together they form a unique fingerprint.

Cite this