High-temperature deformation constitutive law for dissimilar weld residual stress modeling: Effect of thermal load on strain hardening

Xinghua Yu, Paul Crooker, Yanli Wang, Zhili Feng

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Weld residual stress is one of the primary driving forces for primary water stress corrosion cracking in dissimilar metal welds (DMWs). To mitigate tensile residual stress in DMWs, it is critical to understand residual stress distribution by modeling techniques. Recent studies have shown that weld residual stress prediction using today's DMW residual stress models strongly depends on the strain-hardening constitutive model chosen. The commonly used strain-hardening models (isotropic, kinematic, and mixed) are all time-independent and inadequate to account for the time-dependent (viscous) plastic deformation at the elevated temperatures experienced during welding. For materials with profound strain-hardening, such as stainless steels and nickel-based alloys that are widely used in nuclear reactor and piping systems, the equivalent plastic strain-the determinate factor of the flow stress-can be highly dependent on the recovery and recrystallization processes. These processes are in turn a strong function of temperature, time, and deformation rate. Recently, the authors proposed a new temperature-and time-dependent strain-hardening constitutive model: the dynamic strain-hardening constitutive model. The application of such a model has resulted in improved weld residual stress prediction compared to the residual stress measurement results from the contour and deep-hole drilling methods. In this study, the dynamic strain-hardening behavior of Type 304 stainless steel and Alloy 82 used in pressure vessel nozzle DMWs is experimentally determined. The kinetics of the recovery and recrystallization of flow stress are derived from experiments, resulting in a semi-empirical equation as a function of pre-strain, time, and temperature that can be used for weld residual stress modeling. The method used in this work also provides an approach to study the kinetics of recovery and recrystallization of other materials with significant strain-hardening.

Original languageEnglish
Title of host publicationMaterials and Fabrication
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791857007, 9780791857007, 9780791857007, 9780791857007
DOIs
StatePublished - 2015
EventASME 2015 Pressure Vessels and Piping Conference, PVP 2015 - Boston, United States
Duration: Jul 19 2015Jul 23 2015

Publication series

NameAmerican Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Volume6B-2015
ISSN (Print)0277-027X

Conference

ConferenceASME 2015 Pressure Vessels and Piping Conference, PVP 2015
Country/TerritoryUnited States
CityBoston
Period07/19/1507/23/15

Fingerprint

Dive into the research topics of 'High-temperature deformation constitutive law for dissimilar weld residual stress modeling: Effect of thermal load on strain hardening'. Together they form a unique fingerprint.

Cite this