TY - JOUR
T1 - High resolution prediction and explanation of groundwater depletion across India
AU - Alkon, Meir
AU - Wang, Yaoping
AU - Harrington, Matthew R.
AU - Shi, Claudia
AU - Kennedy, Ryan
AU - Urpelainen, Johannes
AU - Kopas, Jacob
AU - He, Xiaogang
N1 - Publisher Copyright:
© 2024 The Authors and UT-Battelle, LLC. Published by IOP Publishing Ltd.
PY - 2024/4/1
Y1 - 2024/4/1
N2 - Food production in much of the world relies on groundwater resources. In many regions, groundwater levels are declining due to a combination of anthropogenic extraction, localized meteorological and geological characteristics, and climate change. Groundwater in India is characteristic of this global trend, with an agricultural sector that is highly dependent on groundwater and increasingly threatened by extraction far in excess of recharge. The complexity of inputs makes groundwater depletion highly heterogeneous across space and time. However, modeling this heterogeneity has thus far proven difficult. Using two ensemble tree-based regression models, we predict district level seasonal groundwater dynamics to an accuracy of R 2 = 0.4-0.6 and Pearson correlations between 0.6 and 0.8. Further using two high-resolution feature importance methods, we demonstrate that atmospheric humidity, groundwater groundwater-based irrigation, and crop cultivation are the most important predictors of seasonal groundwater dynamics at the district level in India. We further demonstrate a shift in the predictors of groundwater depletion over 1998-2014 that is robustly found between the two feature importance methods, namely increasing importance of deep-well irrigation in Central and Eastern India. These areas coincide with districts where groundwater depletion is most severe. Further analysis shows decreases in crop yields per unit of irrigation over those regions, suggesting decreasing marginal returns for largely increasing quantities of groundwater irrigation used. This analysis demonstrates the public policy value of machine learning models for providing high spatiotemporal accuracy in predicting groundwater depletion, while also highlighting how anthropogenic activity impacts groundwater in India, with consequent implications for productivity and well-being.
AB - Food production in much of the world relies on groundwater resources. In many regions, groundwater levels are declining due to a combination of anthropogenic extraction, localized meteorological and geological characteristics, and climate change. Groundwater in India is characteristic of this global trend, with an agricultural sector that is highly dependent on groundwater and increasingly threatened by extraction far in excess of recharge. The complexity of inputs makes groundwater depletion highly heterogeneous across space and time. However, modeling this heterogeneity has thus far proven difficult. Using two ensemble tree-based regression models, we predict district level seasonal groundwater dynamics to an accuracy of R 2 = 0.4-0.6 and Pearson correlations between 0.6 and 0.8. Further using two high-resolution feature importance methods, we demonstrate that atmospheric humidity, groundwater groundwater-based irrigation, and crop cultivation are the most important predictors of seasonal groundwater dynamics at the district level in India. We further demonstrate a shift in the predictors of groundwater depletion over 1998-2014 that is robustly found between the two feature importance methods, namely increasing importance of deep-well irrigation in Central and Eastern India. These areas coincide with districts where groundwater depletion is most severe. Further analysis shows decreases in crop yields per unit of irrigation over those regions, suggesting decreasing marginal returns for largely increasing quantities of groundwater irrigation used. This analysis demonstrates the public policy value of machine learning models for providing high spatiotemporal accuracy in predicting groundwater depletion, while also highlighting how anthropogenic activity impacts groundwater in India, with consequent implications for productivity and well-being.
KW - agriculture
KW - groundwater
KW - India
KW - irrigation
KW - machine learning
UR - http://www.scopus.com/inward/record.url?scp=85190141562&partnerID=8YFLogxK
U2 - 10.1088/1748-9326/ad34e5
DO - 10.1088/1748-9326/ad34e5
M3 - Article
AN - SCOPUS:85190141562
SN - 1748-9318
VL - 19
JO - Environmental Research Letters
JF - Environmental Research Letters
IS - 4
M1 - 044072
ER -