High-resolution electron microscopy and microanalysis of ordered arrays of size-controlled amorphous gallium nitride nanoparticles synthesized in situ in a block copolymer matrix

Valerie J. Leppert, Amith K. Murali, Subhash H. Risbud, Matthias Stender, Philip P. Power, Christopher Nelson, Pallab Banerjee, Anne M. Mayes

Research output: Contribution to journalArticlepeer-review

13 Scopus citations

Abstract

The objective of this work was to produce an ordered array of size-controlled gallium nitride (GaN) nanoparticles. The synthesis was performed by the in situ formulation and subsequent decomposition of cyclotrigallazane in a polystyrene (PS)-b-poly(4-vinylpyridine) (b-P4VP) block copolymer matrix. The matrix served as a templating medium to constrain the particle size and to allow the control of particle morphology, spacing and packing arrangement. The size and spacing of nanoparticles were controlled by the molecular weight of the entire polymer chain (81 000g mol−1), and the particle morphology and packing arrangement were controlled by the ratio of the sequestering block to the matrix block (21 wt% P4VP to 79 wt% PS by elemental analysis). High-resolution and analytical transmission electron microscopy revealed the amorphous nanoparticles to be composed mainly of gallium and nitrogen (with oxygen detected in some particles) about 10nm in diameter with an average interparticle distance of 60 nm and organized in a regular hexagonal packing arrangement. The impact of this synthesis technique is to afford the means to investigate systematically the effect of quantum confinement and quantum coupling on the optical properties of small GaN particles.

Original languageEnglish
Pages (from-to)1047-1054
Number of pages8
JournalPhilosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties
Volume82
Issue number9
DOIs
StatePublished - Jun 2002
Externally publishedYes

Fingerprint

Dive into the research topics of 'High-resolution electron microscopy and microanalysis of ordered arrays of size-controlled amorphous gallium nitride nanoparticles synthesized in situ in a block copolymer matrix'. Together they form a unique fingerprint.

Cite this