TY - JOUR
T1 - High performance platinum group metal-free cathode catalysts for microbial fuel cell (MFC)
AU - Kodali, Mounika
AU - Gokhale, Rohan
AU - Santoro, Carlo
AU - Serov, Alexey
AU - Artyushkova, Kateryna
AU - Atanassov, Plamen
N1 - Publisher Copyright:
© The Author(s) 2016.
PY - 2017
Y1 - 2017
N2 - The oxygen reduction reaction (ORR) at the cathode is usually the limiting step in microbial fuel cells and improvements have to be done to increase the performances and reduce the cost. For the first time, iron-based catalysts were synthesized utilizing the polymerization-pyrolysis method and tested successfully in neutral media and in working microbial fuel cells (MFCs). The catalysts were synthesized using polymerization, salt formation, mixed with iron salt and pyrolyzed at 850°C (PABA-850) and 950°C (PABA- 950) respectively. To study the kinetics, electro-activity of the catalysts was investigated using rotating ring disk electrode (RRDE). Results showed that PABA-850 had higher catalytic activity compared to that of PABA-950. Both Fe-catalysts had much better activity compared to activated carbon (AC) used as a baseline. Catalysts were then integrated into air breathing cathodes (loading 1 mg cm-2) and tested in single chamber MFC. The power peak obtained was 178 ± 3 μWcm-2 for PABA-850. Comparable power was produced from PABA-950 (173 ± 3 μWcm-2). AC power output was 131 ± 4 μWcm-2 that was roughly 40% lower compared to Fe-based catalysts. Those results demonstrated that the addition of platinum group metal free (PGM-free) catalysts increased the output of the MFCs substantially. Fe-based catalysts seem to be suitable for large-scale MFC applications.
AB - The oxygen reduction reaction (ORR) at the cathode is usually the limiting step in microbial fuel cells and improvements have to be done to increase the performances and reduce the cost. For the first time, iron-based catalysts were synthesized utilizing the polymerization-pyrolysis method and tested successfully in neutral media and in working microbial fuel cells (MFCs). The catalysts were synthesized using polymerization, salt formation, mixed with iron salt and pyrolyzed at 850°C (PABA-850) and 950°C (PABA- 950) respectively. To study the kinetics, electro-activity of the catalysts was investigated using rotating ring disk electrode (RRDE). Results showed that PABA-850 had higher catalytic activity compared to that of PABA-950. Both Fe-catalysts had much better activity compared to activated carbon (AC) used as a baseline. Catalysts were then integrated into air breathing cathodes (loading 1 mg cm-2) and tested in single chamber MFC. The power peak obtained was 178 ± 3 μWcm-2 for PABA-850. Comparable power was produced from PABA-950 (173 ± 3 μWcm-2). AC power output was 131 ± 4 μWcm-2 that was roughly 40% lower compared to Fe-based catalysts. Those results demonstrated that the addition of platinum group metal free (PGM-free) catalysts increased the output of the MFCs substantially. Fe-based catalysts seem to be suitable for large-scale MFC applications.
UR - http://www.scopus.com/inward/record.url?scp=85014385611&partnerID=8YFLogxK
U2 - 10.1149/2.0061703jes
DO - 10.1149/2.0061703jes
M3 - Article
AN - SCOPUS:85014385611
SN - 0013-4651
VL - 164
SP - H3041-H3046
JO - Journal of the Electrochemical Society
JF - Journal of the Electrochemical Society
IS - 3
ER -