High-order methods for solutions of three-dimensional turbulent flows

Li Wang, W. Kyle Anderson, J. Taylor Erwin, Sagar Kapadia

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

This paper presents a high-order discontinuous Galerkin (DG) method for three-dimensional turbulent flows. As an extension of our previous work, the paper further investigates the incorporation of a modified Spalart-and-Allmaras (SA) turbulence model with the Reynolds Averaged Navier-Stokes (RANS) equations that are both discretized using a modal discontinuous Galerkin approach. The resulting system of equations, describing the conservative flow fields as well as the turbulence variable, is solved implicitly by an approximate Newton approach with a local time-stepping method to alleviate the initial transient effects. In the context of high-order methods, curved surface mesh is generated through the use of a CAPRI mesh parameterization tool, followed by a linear elasticity solver to determine the interior mesh deformations. The requirements for the wall coordinate and viscous stretching factor used for viscous mesh generation are studied on a twodimensional turbulent flow case. It has been concluded that, for attached turbulent flows, the conventional parameters often used in low-order methods can be somewhat less stringent when a higher-order method is considered. Several other numerical examples including a direct numerical simulation of the Taylor-Green vortex and turbulent flow over an ONERA M6 wing are considered to assess the solution accuracy and to show the performance of high-order DG methods in capturing transitional and turbulent flow phenomena.

Original languageEnglish
Title of host publication51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013
StatePublished - 2013
Externally publishedYes
Event51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013 - Grapevine, TX, United States
Duration: Jan 7 2013Jan 10 2013

Publication series

Name51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013

Conference

Conference51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 2013
Country/TerritoryUnited States
CityGrapevine, TX
Period01/7/1301/10/13

Fingerprint

Dive into the research topics of 'High-order methods for solutions of three-dimensional turbulent flows'. Together they form a unique fingerprint.

Cite this