High-frequency dynamics of ocean pH: A multi-ecosystem comparison

Gretchen E. Hofmann, Jennifer E. Smith, Kenneth S. Johnson, Uwe Send, Lisa A. Levin, Fiorenza Micheli, Adina Paytan, Nichole N. Price, Brittany Peterson, Yuichiro Takeshita, Paul G. Matson, Elizabethrse de Crook, Kristy J. Kroeker, Maria Cristina Gambi, Emily B. Rivest, Christina A. Frieder, Pauline C. Yu, Todd R. Martz

Research output: Contribution to journalArticlepeer-review

762 Scopus citations

Abstract

The effect of Ocean Acidification (OA) on marine biota is quasi-predictable at best. While perturbation studies, in the form of incubations under elevated pCO 2, reveal sensitivities and responses of individual species, one missing link in the OA story results from a chronic lack of pH data specific to a given species' natural habitat. Here, we present a compilation of continuous, high-resolution time series of upper ocean pH, collected using autonomous sensors, over a variety of ecosystems ranging from polar to tropical, open-ocean to coastal, kelp forest to coral reef. These observations reveal a continuum of month-long pH variability with standard deviations from 0.004 to 0.277 and ranges spanning 0.024 to 1.430 pH units. The nature of the observed variability was also highly site-dependent, with characteristic diel, semi-diurnal, and stochastic patterns of varying amplitudes. These biome-specific pH signatures disclose current levels of exposure to both high and low dissolved CO 2, often demonstrating that resident organisms are already experiencing pH regimes that are not predicted until 2100. Our data provide a first step toward crystallizing the biophysical link between environmental history of pH exposure and physiological resilience of marine organisms to fluctuations in seawater CO 2. Knowledge of this spatial and temporal variation in seawater chemistry allows us to improve the design of OA experiments: we can test organisms with a priori expectations of their tolerance guardrails, based on their natural range of exposure. Such hypothesis-testing will provide a deeper understanding of the effects of OA. Both intuitively simple to understand and powerfully informative, these and similar comparative time series can help guide management efforts to identify areas of marine habitat that can serve as refugia to acidification as well as areas that are particularly vulnerable to future ocean change.

Original languageEnglish
Article numbere28983
JournalPLoS ONE
Volume6
Issue number12
DOIs
StatePublished - Dec 19 2011
Externally publishedYes

Funding

The authors gratefully acknowledge support from various organizations that facilitated the deployment of sensors: the U.S. Santa Barbara Coastal Long Term Ecological Research (LTER) site (Director: Dan Reed), the U.S. Moorea Coral Reef LTER site (Directors: Russell Schmitt, Sally Holbrook, Peter Edmunds, Robert Carpenter), Centro de Investigación Científica de Yucatán (CICY), Cancun, Mexico (specifically Mario Rebolledo-Vieyra and Laura Hernandez); and the Stazione Zoologica “Anton Dohrn” (Naples, Italy) all supported the deployment of sensors.

FundersFunder number
CICY
Centro de Investigación Científica de Yucatán
LTER
U.S. Moorea
U.S. Santa Barbara Coastal Long Term Ecological Research
Directorate for Geosciences1040952, 0844394, 0927445, 0944201
Stazione Zoologica Anton Dohrn

    Fingerprint

    Dive into the research topics of 'High-frequency dynamics of ocean pH: A multi-ecosystem comparison'. Together they form a unique fingerprint.

    Cite this