@article{90b6332801bb421a8810585f5b28c64c,
title = "High frame-rate multichannel beam-scanning microscopy based on Lissajous trajectories",
abstract = "A simple beam-scanning optical design based on Lissajous trajectory imaging is described for achieving up to kHz frame-rate optical imaging on multiple simultaneous data acquisition channels. In brief, two fast-scan resonant mirrors direct the optical beam on a circuitous trajectory through the field of view, with the trajectory repeat-time given by the least common multiplier of the mirror periods. Dicing the raw time-domain data into sub-trajectories combined with model-based image reconstruction (MBIR) 3D in-painting algorithms allows for effective frame-rates much higher than the repeat time of the Lissajous trajectory. Since sub-trajectory and full-trajectory imaging are simply different methods of analyzing the same data, both high-frame rate images with relatively low resolution and low frame rate images with high resolution are simultaneously acquired. The optical hardware required to perform Lissajous imaging represents only a minor modification to established beam-scanning hardware, combined with additional control and data acquisition electronics. Preliminary studies based on laser transmittance imaging and polarization-dependent second harmonic generation microscopy support the viability of the approach both for detection of subtle changes in large signals and for trace-light detection of transient fluctuations.",
author = "Sullivan, {Shane Z.} and Muir, {Ryan D.} and Newman, {Justin A.} and Carlsen, {Mark S.} and Suhas Sreehari and Chris Doerge and Begue, {Nathan J.} and Everly, {R. Michael} and Bouman, {Charles A.} and Simpson, {Garth J.}",
note = "Publisher Copyright: {\textcopyright}2014 Optical Society of America.",
year = "2014",
month = oct,
day = "6",
doi = "10.1364/OE.22.024224",
language = "English",
volume = "22",
pages = "24224--24234",
journal = "Optics Express",
issn = "1094-4087",
publisher = "Optica Publishing Group",
number = "20",
}