Abstract
A novel nanocomposite cathode consisting of sulfur and hollow-mesoporous titania (HMT) embedded within carbon nanotubes (CNT), which is designated as S-HMT@CNT, has been obtained by encapsulating elemental sulfur into the pores of hollow-mesoporous, spherical TiO2 particles that are connected via CNT. A carbon-paper interlayer, referred to as dual functional porous carbon wall (DF-PCW), has been obtained by filling the voids in TiO2 spheres with carbon and then etching the TiO2 template with a chemical process. The DF-PCW interlayer provides a medium for scavenging the lithium polysulfides and suppressing them from diffusing to the anode side when it is inserted between the sulfur cathode and the separator. Lithium-sulfur cells fabricated with the thus prepared S-HMT@CNT cathode and the DF-PCW interlayer exhibit superior performance due to the containment of sulfur in TiO2 and improved lithium-ion and electron transports. The Li-S cells display high capacity with excellent capacity retention at rates as high as 1C, 2C, and 5C rates.
Original language | English |
---|---|
Article number | 1501480 |
Journal | Advanced Energy Materials |
Volume | 6 |
Issue number | 1 |
DOIs | |
State | Published - Jan 7 2016 |
Externally published | Yes |
Keywords
- high power
- interlayer
- lithium-sulfur batteries
- porous carbon
- titanium dioxide