Abstract
For the first time, a new generation of innovative non-platinum group metal catalysts based on iron and aminoantipyrine as precursor (Fe-AAPyr) has been utilized in a membraneless single-chamber microbial fuel cell (SCMFC) running on wastewater. Fe-AAPyr was used as an oxygen reduction catalyst in a passive gas-diffusion cathode and implemented in SCMFC design. This catalyst demonstrated better performance than platinum (Pt) during screening in "clean" conditions (PBS), and no degradation in performance during the operation in wastewater. The maximum power density generated by the SCMFC with Fe-AAPyr was 167±6μWcm-2 and remained stable over 16 days, while SCMFC with Pt decreased to 113±4μWcm-2 by day 13, achieving similar values of an activated carbon based cathode. The presence of S2- and SO4 2- showed insignificant decrease of ORR activity for the Fe-AAPyr. The reported results clearly demonstrate that Fe-AAPyr can be utilized in MFCs under the harsh conditions of wastewater.
Original language | English |
---|---|
Article number | 16596 |
Journal | Scientific Reports |
Volume | 5 |
DOIs | |
State | Published - Nov 13 2015 |
Externally published | Yes |
Funding
This project was funded by the Electrochemical Society and Bill & Melinda Gates Foundation under initiative: “Applying Electrochemistry to Complex Global Challenges”.
Funders | Funder number |
---|---|
Bill and Melinda Gates Foundation | |
Electrochemical Society |