Hierarchical QR factorization algorithms for multi-core cluster systems

Jack Dongarra, Mathieu Faverge, Thomas Herault, Julien Langou, Yves Robert

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

This paper describes a new QR factorization algorithm which is especially designed for massively parallel platforms combining parallel distributed multi-core nodes. %equipped with accelerators. These platforms make the present and the foreseeable future of high-performance computing. Our new QR factorization algorithm falls in the category of the tile algorithms which naturally enables good data locality for the sequential kernels executed by the cores (high sequential performance), low number of messages in a parallel distributed setting (small latency term), and fine granularity (high parallelism). Each tile algorithm is uniquely characterized by its sequence of reduction trees. In the context of a cluster of multicores, in order to minimize the number of inter-processor communications (aka, "communication- avoiding" algorithm), it is natural to consider two-level hierarchical trees composed of an "inter-node" tree which acts on top of "intra-node" trees. At the intra-node level, we propose a hierarchical tree made of three levels: (0) "TS level" for cache-friendliness, (1) "low level" for decoupled highly parallel inter-node reductions, (2) "coupling level" to efficiently resolve interactions between local reductions and global reductions. Our hierarchical algorithm and its implementation are flexible and modular, and can accommodate several kernel types, different distribution layouts, and a variety of reduction trees at all levels, both inter-cluster and intra-cluster. Numerical experiments on a cluster of multicore nodes (1) confirm that each of the four levels of our hierarchical tree contributes to build up performance and (2) build insights on how these levels influence performance and interact within each other. Our implementation of the new algorithm with the DAGUE scheduling tool significantly outperforms currently available QR factorization softwares for all matrix shapes, thereby bringing a new advance in numerical linear algebra for petascale and exascale platforms.

Original languageEnglish
Title of host publicationProceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium, IPDPS 2012
Pages607-618
Number of pages12
DOIs
StatePublished - 2012
Event2012 IEEE 26th International Parallel and Distributed Processing Symposium, IPDPS 2012 - Shanghai, China
Duration: May 21 2012May 25 2012

Publication series

NameProceedings of the 2012 IEEE 26th International Parallel and Distributed Processing Symposium, IPDPS 2012

Conference

Conference2012 IEEE 26th International Parallel and Distributed Processing Symposium, IPDPS 2012
Country/TerritoryChina
CityShanghai
Period05/21/1205/25/12

Keywords

  • QR factorization
  • cluster
  • distributed memory
  • hierarchical architecture
  • multicore
  • numerical linear algebra

Fingerprint

Dive into the research topics of 'Hierarchical QR factorization algorithms for multi-core cluster systems'. Together they form a unique fingerprint.

Cite this