Hidden Subsurface Reconstruction and Its Atomic Origins in Layered Oxide Cathodes

Linze Li, Ethan C. Self, Devendrasinh Darbar, Lianfeng Zou, Indranil Bhattacharya, Donghai Wang, Jagjit Nanda, Chongmin Wang

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Structural transformations near surfaces of solid-state materials underpin functional mechanisms of a broad range of applications including catalysis, memory, and energy storage. It has been a long-standing notion that the outermost free surfaces, accompanied by broken translational symmetry and altered atomic configurations, are usually the birthplace for structural transformations. Here, in a layered oxide cathode for Li-ion batteries, we for the first time observe the incipient state of the well-documented layered-to-spinel-like structural transformation, which is surprisingly initiated from the subsurface layer, rather than the very surface. Coupling atomic level scanning transmission electron microscopy imaging with electron energy loss spectroscopy, we discover that the reconstructed subsurfaces, featuring a mix of discrete patches of layered and spinel-like structures, are associated with selective atomic species partition and consequent nanoscale nonuniform composition gradient distribution at the subsurface. Our findings provide fundamental insights on atomic-scale mechanisms of structural transformation in layered cathodes.

Original languageEnglish
Pages (from-to)2756-2762
Number of pages7
JournalNano Letters
Volume20
Issue number4
DOIs
StatePublished - Apr 8 2020

Funding

This work is supported by the Department of Energy Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technology Office, under Award Number DE-EE0008447. The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830. This work is supported by the Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technology Office, under Award Number DE-EE0008447. The work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the Department of Energy under Contract DE-AC05-76RLO1830.

FundersFunder number
U.S. Department of Energy
Office of Energy Efficiency and Renewable EnergyDE-AC05-76RLO1830, DE-EE0008447
Biological and Environmental Research
Pacific Northwest National Laboratory

    Keywords

    • Li-ion batteries
    • layered oxide cathodes
    • scanning transmission electron microscopy
    • structural transformations
    • surface

    Fingerprint

    Dive into the research topics of 'Hidden Subsurface Reconstruction and Its Atomic Origins in Layered Oxide Cathodes'. Together they form a unique fingerprint.

    Cite this