Helical variation of density profiles and fluctuations in the tokamak pedestal with applied 3D fields and implications for confinement

R. S. Wilcox, T. L. Rhodes, M. W. Shafer, L. E. Sugiyama, N. M. Ferraro, B. C. Lyons, G. R. McKee, C. Paz-Soldan, A. Wingen, L. Zeng

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

Small 3D perturbations to the magnetic field in DIII-D (δB/B∼2×10-4) result in large modulations of density fluctuation amplitudes in the pedestal, which are shown using Doppler backscattering measurements to vary by a factor of 2. Helical perturbations of equilibrium density within flux surfaces have previously been observed in the pedestal of DIII-D plasmas when 3D fields are applied and were correlated with density fluctuation asymmetries in the pedestal. These intra-surface density and pressure variations are shown through two fluid MHD modeling studies using the M3D-C1 code to be due to the misalignment of the density and temperature equilibrium iso-surfaces in the pedestal region. This modeling demonstrates that the phase shift between the two iso-surfaces corresponds to the diamagnetic direction of the two species, with the mass density surfaces shifted in the ion diamagnetic direction relative to the temperature and magnetic flux iso-surfaces. The resulting pedestal density, potential, and turbulence asymmetries within flux surfaces near the separatrix may be at least partially responsible for several poorly understood phenomena that occur with the application of 3D fields in tokamaks, including density pump out and the increase in power required to transition from L- to H-mode.

Original languageEnglish
Article number056108
JournalPhysics of Plasmas
Volume25
Issue number5
DOIs
StatePublished - May 1 2018

Funding

This material was based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Award Nos. DE-AC05-00OR22725, DE-FG02-99ER54527, DE-AC02-09CH11466, DE-FG02-08ER54999, DE-FG02-08ER54984, and DE-FC02-04ER54698. DIII-D data shown in this paper can be obtained in digital format by following the links at https://fusion.gat.com/global/D3D_DMP.

FundersFunder number
DOE Office of Science
U.S. Department of Energy
Office of Science
Fusion Energy Sciences

    Fingerprint

    Dive into the research topics of 'Helical variation of density profiles and fluctuations in the tokamak pedestal with applied 3D fields and implications for confinement'. Together they form a unique fingerprint.

    Cite this