Heat deposition analysis for the High Flux Isotope Reactor's HEU and LEU core models

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

The High Flux Isotope Reactor at Oak Ridge National Laboratory is an 85 MWth pressurized light-water-cooled and -moderated flux-trap type research reactor. The reactor is used to conduct numerous experiments, advancing various scientific and engineering disciplines. As part of an ongoing program sponsored by the US Department of Energy National Nuclear Security Administration Office of Material Management and Minimization, studies are being performed to assess the feasibility of converting the reactor's highly enriched uranium fuel to low-enriched uranium fuel. To support this conversion project, reference models with representative experiment target loading and explicit fuel plate representation were developed and benchmarked for both fuels to (1) allow for consistent comparison between designs for both fuel types and (2) assess the potential impact of low-enriched uranium conversion. These high-fidelity models were used to conduct heat deposition analyses at the beginning and end of the reactor cycle and are presented herein. This paper (1) discusses the High Flux Isotope Reactor models developed to facilitate detailed heat deposition analyses of the reactor's highly enriched and low-enriched uranium cores, (2) examines the computational approach for performing heat deposition analysis, which includes a discussion on the methodology for calculating the amount of energy released per fission, heating rates, power and volumetric heating rates, and (3) provides results calculated throughout various regions of the highly enriched and low-enriched uranium core at the beginning and end of the reactor cycle. These are the first detailed high-fidelity heat deposition analyses for the High Flux Isotope Reactor's highly enriched and low-enriched core models with explicit fuel plate representation. These analyses are used to compare heat distributions obtained for both fuel designs at the beginning and end of the reactor cycle, and they are essential for enabling comprehensive thermal hydraulics and safety analyses that require detailed estimates of the heat source within all of the reactor's fuel element regions.

Original languageEnglish
Pages (from-to)563-576
Number of pages14
JournalNuclear Engineering and Design
Volume322
DOIs
StatePublished - Oct 2017

Keywords

  • HEU
  • HFIR
  • Heat deposition
  • LEU
  • Monte Carlo depletion
  • Research reactor

Fingerprint

Dive into the research topics of 'Heat deposition analysis for the High Flux Isotope Reactor's HEU and LEU core models'. Together they form a unique fingerprint.

Cite this