Heat based power augmentation for modular pumped hydro storage in smart buildings operation

Yang Chen, Ahmad Abu-Heiba, Saiid Kassaee, Chenang Liu, Guodong Liu, Michael Starke, Brennan T. Smith, Ayyoub M. Momen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

In the U.S., building sector is responsible for around 40% of total energy consumption and contributes about 40% of carbon emissions since 2012. Within the past several years, various optimization models and control strategies have been studied to improve buildings energy efficiency and reduce operational expenses under the constraints of satisfying occupants' comfort requirements. However, the majority of these studies consider building electricity demand and thermal load being satisfied by unidirectional electricity flow from the power grid or on-site renewable energy generation to electrical and thermal home appliances. Opportunities for leveraging low grade heat for electricity have largely been overlooked due to impracticality at small scale. In 2016, a modular pumped hydro storage technology was invented in Oak Ridge National Laboratory, named Ground Level Integrated Diverse Energy Storage (GLIDES). In GLIDES, employing high efficiency hydraulic machinery instead of gas compressor/turbine, liquid is pumped to compress gas inside high-pressure vessel creating head on ground-level. This unique design eliminates the geographical limitation associated with existing state of the art energy storage technologies. It is easy to be scaled for building level, community level and grid level applications. Using this novel hydro-pneumatic storage technology, opportunities for leveraging low-grade heat in building can be economical. In this research, the potential of utilizing low-grade thermal energy to augment electricity generation of GLIDES is investigated. Since GLIDES relies on gas expansion in the discharge process and the gas temperature drops during this nonisothermal process, available thermal energy, e.g. from thermal storage, Combined Cooling, Heat and Power system (CCHP), can be utilized by GLIDES to counter the cooling effect of the expansion process and elevate the gas temperature and pressure and boost the roundtrip efficiency. Several groups of comparison experiments have been conducted and the experimental results show that a maximum 12.9% cost saving could be achieved with unlimited heat source for GLIDES, and a moderate 3.8% cost improvement can be expected when operated coordinately with CCHP and thermal energy storage in a smart building.

Original languageEnglish
Title of host publicationProceedings of the ASME 2021 15th International Conference on Energy Sustainability, ES 2021
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791884881
DOIs
StatePublished - 2021
EventASME 2021 15th International Conference on Energy Sustainability, ES 2021 - Virtual, Online
Duration: Jun 16 2021Jun 18 2021

Publication series

NameProceedings of the ASME 2021 15th International Conference on Energy Sustainability, ES 2021

Conference

ConferenceASME 2021 15th International Conference on Energy Sustainability, ES 2021
CityVirtual, Online
Period06/16/2106/18/21

Funding

∗Corresponding Email: [email protected]. This manuscript has been authored in part by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Fingerprint

Dive into the research topics of 'Heat based power augmentation for modular pumped hydro storage in smart buildings operation'. Together they form a unique fingerprint.

Cite this