TY - GEN
T1 - HAN
T2 - 22nd IEEE International Conference on Cluster Computing, CLUSTER 2020
AU - Luo, Xi
AU - Wu, Wei
AU - Bosilca, George
AU - Pei, Yu
AU - Cao, Qinglei
AU - Patinyasakdikul, Thananon
AU - Zhong, Dong
AU - Dongarra, Jack
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/9
Y1 - 2020/9
N2 - High-performance computing (HPC) systems keep growing in scale and heterogeneity to satisfy the increasing computational need, and this brings new challenges to the design of MPI libraries, especially with regard to collective operations. To address these challenges, we present 'HAN,' a new hierarchical autotuned collective communication framework in Open MPI, which selects suitable homogeneous collective communication modules as submodules for each hardware level, uses collective operations from the submodules as tasks, and organizes these tasks to perform efficient hierarchical collective operations. With a task-based design, HAN can easily swap out submodules, while keeping tasks intact, to adapt to new hardware. This makes HAN suitable for the current platform and provides a strong and flexible support for future HPC systems. To provide a fast and accurate autotuning mechanism, we present a novel cost model based on benchmarking the tasks instead of a whole collective operation. This method drastically reduces tuning time, as the cost of tasks can be reused across different message sizes, and is more accurate than existing cost models. Our cost analysis suggests the autotuning component can find the optimal configuration in most cases. The evaluation of the HAN framework suggests our design significantly improves the default Open MPI and achieves decent speedups against state-of-the-art MPI implementations on tested applications.
AB - High-performance computing (HPC) systems keep growing in scale and heterogeneity to satisfy the increasing computational need, and this brings new challenges to the design of MPI libraries, especially with regard to collective operations. To address these challenges, we present 'HAN,' a new hierarchical autotuned collective communication framework in Open MPI, which selects suitable homogeneous collective communication modules as submodules for each hardware level, uses collective operations from the submodules as tasks, and organizes these tasks to perform efficient hierarchical collective operations. With a task-based design, HAN can easily swap out submodules, while keeping tasks intact, to adapt to new hardware. This makes HAN suitable for the current platform and provides a strong and flexible support for future HPC systems. To provide a fast and accurate autotuning mechanism, we present a novel cost model based on benchmarking the tasks instead of a whole collective operation. This method drastically reduces tuning time, as the cost of tasks can be reused across different message sizes, and is more accurate than existing cost models. Our cost analysis suggests the autotuning component can find the optimal configuration in most cases. The evaluation of the HAN framework suggests our design significantly improves the default Open MPI and achieves decent speedups against state-of-the-art MPI implementations on tested applications.
KW - MPI
KW - autotuning
KW - cost model
KW - hierarchical collective operation
UR - http://www.scopus.com/inward/record.url?scp=85096235860&partnerID=8YFLogxK
U2 - 10.1109/CLUSTER49012.2020.00013
DO - 10.1109/CLUSTER49012.2020.00013
M3 - Conference contribution
AN - SCOPUS:85096235860
T3 - Proceedings - IEEE International Conference on Cluster Computing, ICCC
SP - 23
EP - 34
BT - Proceedings - 2020 IEEE International Conference on Cluster Computing, CLUSTER 2020
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 14 September 2020 through 17 September 2020
ER -