GTQCP: Greedy Topology-Aware Quantum Circuit Partitioning

Joseph Clark, Travis S. Humble, Himanshu Thapliyal

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

We propose Greedy Topology-Aware Quantum Circuit Partitioning (GTQCP), a novel quantum gate circuit partitioning method which partitions circuits by applying a greedy heuristic to the qubit dependency graph of the circuit. GTQCP is compared against three other gate partitioning methods, two of which (QuickPartitioner and ScanPartitioner) are part of the Berkley Quantum Synthesis Toolkit. GTQCP is shown to have 18% run time improvement ratio over the fastest approach (QuickPartitioner), and a 96% improvement over the highest quality approach (ScanPartitioner). The algorithm also demonstrates nearly identical result quality (number of partitions) compared with ScanPartitioner, and a 38% quality improvement over QuickPartitioner.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE International Conference on Quantum Computing and Engineering, QCE 2023
EditorsHausi Muller, Yuri Alexev, Andrea Delgado, Greg Byrd
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages739-744
Number of pages6
ISBN (Electronic)9798350343236
DOIs
StatePublished - 2023
Event4th IEEE International Conference on Quantum Computing and Engineering, QCE 2023 - Bellevue, United States
Duration: Sep 17 2023Sep 22 2023

Publication series

NameProceedings - 2023 IEEE International Conference on Quantum Computing and Engineering, QCE 2023
Volume1

Conference

Conference4th IEEE International Conference on Quantum Computing and Engineering, QCE 2023
Country/TerritoryUnited States
CityBellevue
Period09/17/2309/22/23

Keywords

  • partitioning algorithm
  • quantum circuits
  • quantum computing

Fingerprint

Dive into the research topics of 'GTQCP: Greedy Topology-Aware Quantum Circuit Partitioning'. Together they form a unique fingerprint.

Cite this