TY - GEN
T1 - Grid voltage modulated direct power control for grid connected voltage source inverters
AU - Gui, Yonghao
AU - Kim, Chunghun
AU - Chung, Chung Choo
N1 - Publisher Copyright:
© 2017 American Automatic Control Council (AACC).
PY - 2017/6/29
Y1 - 2017/6/29
N2 - We propose a grid voltage modulated (GVM) direct power control (DPC) strategy for a grid-connected voltage source inverter (VSI) to control the instantaneous active and reactive powers. The GVM-DPC presents the system in d-q frame without using a phase-lock loop. In addition, the GVM method converts the system into a linear time-invariant system. The GVM-DPC is designed to obtain two separate second-order systems for not only the convergence rate of the instantaneous active and reactive powers but also the steady-state performance. In addition, the closed-loop system is exponentially stable in the whole operating range. The proposed method is verified by using MATLAB/Simulink with PLECS blockset. The simulation results show that the proposed method has not only good tracking performances in both active and reactive powers but also a lower current total harmonic distortion than that of the sliding mode control DPC method. Finally, the proposed method is validated by using a hardware-in-the-loop system with a digital signal processor. The experimental results are similar to simulation results. Moreover, the robustness to the line impedance and the grid voltage is tested and discussed.
AB - We propose a grid voltage modulated (GVM) direct power control (DPC) strategy for a grid-connected voltage source inverter (VSI) to control the instantaneous active and reactive powers. The GVM-DPC presents the system in d-q frame without using a phase-lock loop. In addition, the GVM method converts the system into a linear time-invariant system. The GVM-DPC is designed to obtain two separate second-order systems for not only the convergence rate of the instantaneous active and reactive powers but also the steady-state performance. In addition, the closed-loop system is exponentially stable in the whole operating range. The proposed method is verified by using MATLAB/Simulink with PLECS blockset. The simulation results show that the proposed method has not only good tracking performances in both active and reactive powers but also a lower current total harmonic distortion than that of the sliding mode control DPC method. Finally, the proposed method is validated by using a hardware-in-the-loop system with a digital signal processor. The experimental results are similar to simulation results. Moreover, the robustness to the line impedance and the grid voltage is tested and discussed.
UR - http://www.scopus.com/inward/record.url?scp=85027038896&partnerID=8YFLogxK
U2 - 10.23919/ACC.2017.7963259
DO - 10.23919/ACC.2017.7963259
M3 - Conference contribution
AN - SCOPUS:85027038896
T3 - Proceedings of the American Control Conference
SP - 2078
EP - 2084
BT - 2017 American Control Conference, ACC 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2017 American Control Conference, ACC 2017
Y2 - 24 May 2017 through 26 May 2017
ER -