TY - GEN
T1 - Grid-Tied PV Inverter with Oversized Power Module to Increase its Low-Voltage Ride Through (LVRT) Capabilities and VAR Support
AU - Ferrari, Maximiliano
AU - Tolbert, Leon M.
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - This paper proposes a novel design for grid-tied 3-ph Photovoltaic (PV) inverter to improve its low-voltage ride through (LVRT) response while significantly increasing its voltampere reactive (VAR) support during voltage sags. The literature available on LVRT for PV inverters can be grouped in solutions that dissipate the excess energy and those that temporary stores this energy. This paper proposes a third solution; oversizing inverter hardware components to safely transferring all the energy excess back to while maintaining the semiconductor under the maximum temperature limits. The advantages of the proposed approach are: 1) Improved LVRT capabilities and stable dc-link voltage control at MPP during sags. 2) Increased VAR support during voltage sags. 3) Increased use of renewable energy as all active power is injected back to the grid during voltage sags. Finally, the proposed solution is more cost effective compared with solutions that incorporate energy storage because only a few inverter components are required to be oversized. This paper also presents a detailed power loss analysis, which determined that that oversizing the power semiconductors has minimal impact in the inverter losses while significatively reducing the diode and IGBT conduction losses during both normal operation and grid fault conditions.
AB - This paper proposes a novel design for grid-tied 3-ph Photovoltaic (PV) inverter to improve its low-voltage ride through (LVRT) response while significantly increasing its voltampere reactive (VAR) support during voltage sags. The literature available on LVRT for PV inverters can be grouped in solutions that dissipate the excess energy and those that temporary stores this energy. This paper proposes a third solution; oversizing inverter hardware components to safely transferring all the energy excess back to while maintaining the semiconductor under the maximum temperature limits. The advantages of the proposed approach are: 1) Improved LVRT capabilities and stable dc-link voltage control at MPP during sags. 2) Increased VAR support during voltage sags. 3) Increased use of renewable energy as all active power is injected back to the grid during voltage sags. Finally, the proposed solution is more cost effective compared with solutions that incorporate energy storage because only a few inverter components are required to be oversized. This paper also presents a detailed power loss analysis, which determined that that oversizing the power semiconductors has minimal impact in the inverter losses while significatively reducing the diode and IGBT conduction losses during both normal operation and grid fault conditions.
KW - Low-voltage ride through (LVRT)
KW - PV
KW - VAR
UR - http://www.scopus.com/inward/record.url?scp=85180009228&partnerID=8YFLogxK
U2 - 10.1109/ISGT-LA56058.2023.10328350
DO - 10.1109/ISGT-LA56058.2023.10328350
M3 - Conference contribution
AN - SCOPUS:85180009228
T3 - 2023 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT-LA 2023
SP - 145
EP - 149
BT - 2023 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT-LA 2023
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT-LA 2023
Y2 - 6 November 2023 through 9 November 2023
ER -