Grid-Tied PV Inverter with Oversized Power Module to Increase its Low-Voltage Ride Through (LVRT) Capabilities and VAR Support

Maximiliano Ferrari, Leon M. Tolbert

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

This paper proposes a novel design for grid-tied 3-ph Photovoltaic (PV) inverter to improve its low-voltage ride through (LVRT) response while significantly increasing its voltampere reactive (VAR) support during voltage sags. The literature available on LVRT for PV inverters can be grouped in solutions that dissipate the excess energy and those that temporary stores this energy. This paper proposes a third solution; oversizing inverter hardware components to safely transferring all the energy excess back to while maintaining the semiconductor under the maximum temperature limits. The advantages of the proposed approach are: 1) Improved LVRT capabilities and stable dc-link voltage control at MPP during sags. 2) Increased VAR support during voltage sags. 3) Increased use of renewable energy as all active power is injected back to the grid during voltage sags. Finally, the proposed solution is more cost effective compared with solutions that incorporate energy storage because only a few inverter components are required to be oversized. This paper also presents a detailed power loss analysis, which determined that that oversizing the power semiconductors has minimal impact in the inverter losses while significatively reducing the diode and IGBT conduction losses during both normal operation and grid fault conditions.

Original languageEnglish
Title of host publication2023 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT-LA 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages145-149
Number of pages5
ISBN (Electronic)9798350336962
DOIs
StatePublished - 2023
Event2023 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT-LA 2023 - San Juan, United States
Duration: Nov 6 2023Nov 9 2023

Publication series

Name2023 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT-LA 2023

Conference

Conference2023 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT-LA 2023
Country/TerritoryUnited States
CitySan Juan
Period11/6/2311/9/23

Funding

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publi- cation, acknowledges that the United States Government retains a nonexclu- sive, paid-up, irrevocable, world-wide license to publish or reproduce the pub- lished form of this manuscript, or allow others to do so, for United States Gov- ernment purposes. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

FundersFunder number
United States Government
U.S. Department of Energy

    Keywords

    • Low-voltage ride through (LVRT)
    • PV
    • VAR

    Fingerprint

    Dive into the research topics of 'Grid-Tied PV Inverter with Oversized Power Module to Increase its Low-Voltage Ride Through (LVRT) Capabilities and VAR Support'. Together they form a unique fingerprint.

    Cite this