Abstract
Gremlin learns where a given machine learner (ML) model performs poorly via an adversarial evolutionary algorithm (EA). The EA will find the worst performing feature sets such that a practitioner can then, say, tune the training data to include more examples of those feature sets. Then the ML model can be trained again with the updated training set in the hopes that the additional examples will be sufficient for the ML to train models that perform better for those sets.
Original language | American English |
---|---|
Media of output | Online |
State | Published - 2021 |