Gravitational effects on structure development in quenched complex fluids

V. E. Badalassi, H. D. Ceniceros, S. Banerjee

Research output: Contribution to journalArticlepeer-review

6 Scopus citations

Abstract

When binary liquid mixtures are cooled rapidly from a homogeneous phase into a two-phase system, domains of the two equilibrium phases form and grow (coarsen) with time. In the absence of an external forcing due to gravity or an imposed shear flow, a dynamic scaling regime emerges in which the domain morphology is statistically self-similar at different times with a length-scale that grows with time. In the presence of gravity, however, multiple length scales develop, with the system coarsening more rapidly in the direction of the force. The late-time behavior of such a system is characterized in this study by the calculation of anisotropic growth laws. Gravitation effects significantly affect scaling laws, even with small density mismatch, and the growth mechanism has some similarities to the sedimentation process. However, very few numerical studies have been made of such effects; this is one of the first.

Original languageEnglish
Pages (from-to)371-382
Number of pages12
JournalAnnals of the New York Academy of Sciences
Volume1027
DOIs
StatePublished - 2004
Externally publishedYes

Keywords

  • Cahn-Hilliard equation
  • Model H
  • Navier-Stokes equations
  • Phase separation under gravity

Fingerprint

Dive into the research topics of 'Gravitational effects on structure development in quenched complex fluids'. Together they form a unique fingerprint.

Cite this