Abstract
The quantum approximate optimization algorithm (QAOA) has the potential to approximately solve complex combinatorial optimization problems in polynomial time. However, current noisy quantum devices cannot solve large problems due to hardware constraints. In this work, we develop an algorithm that decomposes the QAOA input problem graph into a smaller problem and solves MaxCut using QAOA on the reduced graph. The algorithm requires a subroutine that can be classical or quantum—in this work, we implement the algorithm twice on each graph. One implementation uses the classical solver Gurobi in the subroutine and the other uses QAOA. We solve these reduced problems with QAOA. On average, the reduced problems require only approximately 1/10 of the number of vertices than the original MaxCut instances. Furthermore, the average approximation ratio of the original MaxCut problems is 0.75, while the approximation ratios of the decomposed graphs are on average of 0.96 for both Gurobi and QAOA. With this decomposition, we are able to measure optimal solutions for ten 100-vertex graphs by running single-layer QAOA circuits on the Quantinuum trapped-ion quantum computer H1-1, sampling each circuit only 500 times. This approach is best suited for sparse, particularly k-regular graphs, as k-regular graphs on n vertices can be decomposed into a graph with at most nkk+1 vertices in polynomial time. Further reductions can be obtained with a potential trade-off in computational time. While this paper applies the decomposition method to the MaxCut problem, it can be applied to more general classes of combinatorial optimization problems.
Original language | English |
---|---|
Article number | 60 |
Journal | Quantum Information Processing |
Volume | 24 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2025 |
Funding
This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC0500OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. This work was supported by DARPA ONISQ program under award W911NF-20-2-0051. G.S. acknowledges support by the National Science Foundation under award DGE-2152168 and the Army Research Office under award W911NF-19-1-0397. R. H. and J. O. acknowledge NSF CCF 2210063. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.
Keywords
- Combinatorial optimization
- MaxCut
- QAOA