TY - JOUR
T1 - Gradual localization of Ni 3d states in LaNiO3 ultrathin films induced by dimensional crossover
AU - Sakai, Enju
AU - Tamamitsu, Masatomo
AU - Yoshimatsu, Kohei
AU - Okamoto, Satoshi
AU - Horiba, Koji
AU - Oshima, Masaharu
AU - Kumigashira, Hiroshi
PY - 2013/2/20
Y1 - 2013/2/20
N2 - In situ photoemission spectroscopy and x-ray absorption spectroscopy (XAS) have been performed on LaNiO3 (LNO) ultrathin films grown on LaAlO3 substrates to investigate the origin of the thickness-dependent metal-insulator transition (MIT). With decreasing film thickness, the progressive weakening of a quasiparticle peak at the Fermi level (EF) occurs below 10 monolayer (ML), and the further depletion of spectral weight at EF leads to pseudogap behavior at 3-6 ML. The pseudogap finally evolves into a full gap, indicating that the thickness-dependent MIT takes place at a critical film thickness of 2-3 ML. The observed spectral behavior is in line with the transport properties of LNO ultrathin films. The thickness dependence of the spectral intensity is compared with realistic multiorbital dynamical mean-field theory. The experimental spectral function was found to depend on the film thickness more strongly than the theoretical one for thinner systems, indicating that the thickness-dependent MIT in LNO is caused by the crossover from three to two dimensions, during which the spatial correlations are progressively enhanced. The XAS results suggest that a charge disproportionate state is strongly suppressed in LNO ultrathin films plausibly as a result of epitaxial strain from the substrates. These results strongly suggest that a novel insulating state is realized in LNO films at a thin limit.
AB - In situ photoemission spectroscopy and x-ray absorption spectroscopy (XAS) have been performed on LaNiO3 (LNO) ultrathin films grown on LaAlO3 substrates to investigate the origin of the thickness-dependent metal-insulator transition (MIT). With decreasing film thickness, the progressive weakening of a quasiparticle peak at the Fermi level (EF) occurs below 10 monolayer (ML), and the further depletion of spectral weight at EF leads to pseudogap behavior at 3-6 ML. The pseudogap finally evolves into a full gap, indicating that the thickness-dependent MIT takes place at a critical film thickness of 2-3 ML. The observed spectral behavior is in line with the transport properties of LNO ultrathin films. The thickness dependence of the spectral intensity is compared with realistic multiorbital dynamical mean-field theory. The experimental spectral function was found to depend on the film thickness more strongly than the theoretical one for thinner systems, indicating that the thickness-dependent MIT in LNO is caused by the crossover from three to two dimensions, during which the spatial correlations are progressively enhanced. The XAS results suggest that a charge disproportionate state is strongly suppressed in LNO ultrathin films plausibly as a result of epitaxial strain from the substrates. These results strongly suggest that a novel insulating state is realized in LNO films at a thin limit.
UR - http://www.scopus.com/inward/record.url?scp=84874518808&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.87.075132
DO - 10.1103/PhysRevB.87.075132
M3 - Article
AN - SCOPUS:84874518808
SN - 1098-0121
VL - 87
JO - Physical Review B - Condensed Matter and Materials Physics
JF - Physical Review B - Condensed Matter and Materials Physics
IS - 7
M1 - 075132
ER -