TY - JOUR
T1 - Global peak water limit of future groundwater withdrawals
AU - Niazi, Hassan
AU - Wild, Thomas B.
AU - Turner, Sean W.D.
AU - Graham, Neal T.
AU - Hejazi, Mohamad
AU - Msangi, Siwa
AU - Kim, Son
AU - Lamontagne, Jonathan R.
AU - Zhao, Mengqi
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer Nature Limited 2024.
PY - 2024/4
Y1 - 2024/4
N2 - Over the past 50 years, humans have extracted the Earth’s groundwater stocks at a steep rate, largely to fuel global agro-economic development. Given society’s growing reliance on groundwater, we explore ‘peak water limits’ to investigate whether, when and where humanity might reach peak groundwater extraction. Using an integrated global model of the coupled human–Earth system, we simulate groundwater withdrawals across 235 water basins under 900 future scenarios of global change over the twenty-first century. Here we find that global non-renewable groundwater withdrawals exhibit a distinct peak-and-decline signature, comparable to historical observations of other depletable resources (for example, minerals), in nearly all (98%) scenarios, peaking on average at 625 km3 yr−1 around mid-century, followed by a decline through 2100. The peak and decline occur in about one-third (82) of basins, including 21 that may have already peaked, exposing about half (44%) of the global population to groundwater stress. Most of these basins are in countries with the highest current extraction rates, including the United States, Mexico, Pakistan, India, China, Saudi Arabia and Iran. These groundwater-dependent basins will probably face increasing costs of groundwater and food production, suggesting important implications for global agricultural trade and a diminished role for groundwater in meeting global water demands during the twenty-first century.
AB - Over the past 50 years, humans have extracted the Earth’s groundwater stocks at a steep rate, largely to fuel global agro-economic development. Given society’s growing reliance on groundwater, we explore ‘peak water limits’ to investigate whether, when and where humanity might reach peak groundwater extraction. Using an integrated global model of the coupled human–Earth system, we simulate groundwater withdrawals across 235 water basins under 900 future scenarios of global change over the twenty-first century. Here we find that global non-renewable groundwater withdrawals exhibit a distinct peak-and-decline signature, comparable to historical observations of other depletable resources (for example, minerals), in nearly all (98%) scenarios, peaking on average at 625 km3 yr−1 around mid-century, followed by a decline through 2100. The peak and decline occur in about one-third (82) of basins, including 21 that may have already peaked, exposing about half (44%) of the global population to groundwater stress. Most of these basins are in countries with the highest current extraction rates, including the United States, Mexico, Pakistan, India, China, Saudi Arabia and Iran. These groundwater-dependent basins will probably face increasing costs of groundwater and food production, suggesting important implications for global agricultural trade and a diminished role for groundwater in meeting global water demands during the twenty-first century.
UR - http://www.scopus.com/inward/record.url?scp=85191067407&partnerID=8YFLogxK
U2 - 10.1038/s41893-024-01306-w
DO - 10.1038/s41893-024-01306-w
M3 - Article
AN - SCOPUS:85191067407
SN - 2398-9629
VL - 7
SP - 413
EP - 422
JO - Nature Sustainability
JF - Nature Sustainability
IS - 4
ER -