Global Disease Outbreaks Associated with the 2015–2016 El Niño Event

Assaf Anyamba, Jean Paul Chretien, Seth C. Britch, Radina P. Soebiyanto, Jennifer L. Small, Rikke Jepsen, Brett M. Forshey, Jose L. Sanchez, Ryan D. Smith, Ryan Harris, Compton J. Tucker, William B. Karesh, Kenneth J. Linthicum

Research output: Contribution to journalArticlepeer-review

110 Scopus citations

Abstract

Interannual climate variability patterns associated with the El Niño-Southern Oscillation phenomenon result in climate and environmental anomaly conditions in specific regions worldwide that directly favor outbreaks and/or amplification of variety of diseases of public health concern including chikungunya, hantavirus, Rift Valley fever, cholera, plague, and Zika. We analyzed patterns of some disease outbreaks during the strong 2015–2016 El Niño event in relation to climate anomalies derived from satellite measurements. Disease outbreaks in multiple El Niño-connected regions worldwide (including Southeast Asia, Tanzania, western US, and Brazil) followed shifts in rainfall, temperature, and vegetation in which both drought and flooding occurred in excess (14–81% precipitation departures from normal). These shifts favored ecological conditions appropriate for pathogens and their vectors to emerge and propagate clusters of diseases activity in these regions. Our analysis indicates that intensity of disease activity in some ENSO-teleconnected regions were approximately 2.5–28% higher during years with El Niño events than those without. Plague in Colorado and New Mexico as well as cholera in Tanzania were significantly associated with above normal rainfall (p < 0.05); while dengue in Brazil and southeast Asia were significantly associated with above normal land surface temperature (p < 0.05). Routine and ongoing global satellite monitoring of key climate variable anomalies calibrated to specific regions could identify regions at risk for emergence and propagation of disease vectors. Such information can provide sufficient lead-time for outbreak prevention and potentially reduce the burden and spread of ecologically coupled diseases.

Original languageEnglish
Article number1930
JournalScientific Reports
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2019
Externally publishedYes

Funding

This research was supported by funding from the Department of Defense Health Agency-Armed Forces Health Surveillance Branch (AFHSB) Global Emerging Infections Surveillance and Response System (GEIS) under Project #P2253_16_NS. Precipitation anomaly forecast products were generated by the North American Multi-Model Ensemble project and made available to this effort by United States Air Force, 14th Weather Squadron— Department of Defense Climate Services. The North American Multi-Model Ensemble project is supported by NOAA, NSF, NASA, and DOE. Credit also goes to the NCEP, IRI, and NCAR personnel in creating, updating, and maintaining the North American Multi-Model Ensemble archive. We also acknowledge the NOAA Climate Prediction Center and NASA/GSFC/Earth Science Data and Information System (ESDIS) which produce the climate and satellite derived data used in this study and to ProMED (http://www.promedmail.org/) for providing a platform for disease outbreak reporting. The views expressed in this article are those of the authors and do not reflect the official policy or position of the Department of Defense or of the U.S. Government.

FundersFunder number
National Science Foundation
U.S. Department of DefenseP2253_16_NS
U.S. Department of Defense
U.S. Department of Energy
National Aeronautics and Space Administration
National Oceanic and Atmospheric Administration
Armed Forces Health Surveillance Branch2253_16_NS
Armed Forces Health Surveillance Branch

    Fingerprint

    Dive into the research topics of 'Global Disease Outbreaks Associated with the 2015–2016 El Niño Event'. Together they form a unique fingerprint.

    Cite this