TY - JOUR
T1 - Giant Spontaneous Magnetostriction in MnTe Driven by a Novel Magnetostructural Coupling Mechanism
AU - Baral, Raju
AU - Abeykoon, A. M.Milinda
AU - Campbell, Branton J.
AU - Frandsen, Benjamin A.
N1 - Publisher Copyright:
© 2023 Wiley-VCH GmbH.
PY - 2023/11/9
Y1 - 2023/11/9
N2 - A comprehensive x-ray scattering study of spontaneous magnetostriction in hexagonal MnTe, an antiferromagnetic semiconductor with a Néel temperature of TN = 307 K, is presented. The largest spontaneous magnetovolume effect known for an antiferromagnet is observed, reaching a volume contraction of |ΔV/V| > 7 × 10−3. This can be justified semiquantitatively by considering bulk material properties, the spatial dependence of the superexchange interaction, and the geometrical arrangement of magnetic moments in MnTe. The highly unusual linear scaling of the magnetovolume effect with the short-range magnetic correlations, beginning in the paramagnetic state well above TN, points to a novel physical mechanism, which is explained in terms of a trilinear coupling of the elastic strain with superposed distinct domains of the antiferromagnetic order parameter. This novel mechanism for coupling lattice strain to robust short-range magnetic order casts new light on magnetostrictive phenomena and also provides a template by which the exceptional magnetostrictive properties of MnTe might be realized in a wide range of other functional materials.
AB - A comprehensive x-ray scattering study of spontaneous magnetostriction in hexagonal MnTe, an antiferromagnetic semiconductor with a Néel temperature of TN = 307 K, is presented. The largest spontaneous magnetovolume effect known for an antiferromagnet is observed, reaching a volume contraction of |ΔV/V| > 7 × 10−3. This can be justified semiquantitatively by considering bulk material properties, the spatial dependence of the superexchange interaction, and the geometrical arrangement of magnetic moments in MnTe. The highly unusual linear scaling of the magnetovolume effect with the short-range magnetic correlations, beginning in the paramagnetic state well above TN, points to a novel physical mechanism, which is explained in terms of a trilinear coupling of the elastic strain with superposed distinct domains of the antiferromagnetic order parameter. This novel mechanism for coupling lattice strain to robust short-range magnetic order casts new light on magnetostrictive phenomena and also provides a template by which the exceptional magnetostrictive properties of MnTe might be realized in a wide range of other functional materials.
KW - magnetostructural coupling
KW - magnetovolume effect
KW - short-range magnetic order
KW - spontaneous magnetostriction
UR - http://www.scopus.com/inward/record.url?scp=85166590230&partnerID=8YFLogxK
U2 - 10.1002/adfm.202305247
DO - 10.1002/adfm.202305247
M3 - Article
AN - SCOPUS:85166590230
SN - 1616-301X
VL - 33
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 46
M1 - 2305247
ER -