Abstract
The spin-driven polarizations of type-I multiferroics are veiled by the preexisting ferroelectric (FE) polarization. Using first-principles calculations combined with a spin model, we uncover two hidden but huge spin-driven polarizations in the room-temperature multiferroic BiFeO3. One is associated with the global inversion symmetry broken by a FE distortion, and the other is associated with the local inversion symmetry broken by an antiferrodistortive octahedral rotation. Comparison with recent neutron scatterings reveals tha first polarization reaches ∼3.0 μC/cm2, which is larger than in any other multiferroic material. Our exhaustive study paves a way to uncover the various magnetoelectric couplings that generate hidden spin-driven polarizations in other type-I multiferroics.
| Original language | English |
|---|---|
| Article number | 207203 |
| Journal | Physical Review Letters |
| Volume | 115 |
| Issue number | 20 |
| DOIs | |
| State | Published - Nov 11 2015 |