Abstract
Relaxor-based ferroelectrics are prized for their giant electromechanical coupling and have revolutionized sensor and ultrasound applications. A long-standing challenge for piezoelectric materials has been to understand how these ultrahigh electromechanical responses occur when the polar atomic displacements underlying the response are partially broken into polar nanoregions (PNRs) in relaxor-based ferroelectrics. Given the complex inhomogeneous nanostructure of these materials, it has generally been assumed that this enhanced response must involve complicated interactions. By using neutron scattering measurements of lattice dynamics and local structure, we show that the vibrational modes of the PNRs enable giant coupling by softening the underlying macrodomain polarization rotations in relaxor-based ferroelectric PMN-xPT {(1 − x)[Pb(Mg1/3Nb2/3)O3] –xPbTiO3} (x = 30%). The mechanism involves the collective motion of the PNRs with transverse acoustic phonons and results in two hybrid modes, one softer and one stiffer than the bare acoustic phonon. The softer mode is the origin of macroscopic shear softening. Furthermore, a PNR mode and a component of the local structure align in an electric field; this further enhances shear softening, revealing a way to tune the ultrahigh piezoelectric response by engineering elastic shear softening.
Original language | English |
---|---|
Article number | e1501814 |
Journal | Science Advances |
Volume | 2 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2016 |
Funding
M.E.M. acknowledges useful communications with P. M. Gehring. This work was sponsored by the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy. The portions of this research performed at the Oak Ridge National Laboratory’s Spallation Neutron Source and High Flux Isotope Reactor facilities were sponsored by the Office of Basic Energy Sciences, U.S. Department of Energy. We acknowledge the support of the National Institute of Standards and Technology, U.S. Department of Commerce, in providing neutron research facilities used in this work. The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of Standards and Technology.
Funders | Funder number |
---|---|
U.S. Department of Energy | |
National Institute of Standards and Technology | |
U.S. Department of Commerce | |
Basic Energy Sciences | |
Oak Ridge National Laboratory |