Giant anharmonic phonon scattering in PbTe

O. Delaire, J. Ma, K. Marty, A. F. May, M. A. McGuire, M. H. Du, D. J. Singh, A. Podlesnyak, G. Ehlers, M. D. Lumsden, B. C. Sales

Research output: Contribution to journalArticlepeer-review

596 Scopus citations

Abstract

Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic mode and the longitudinal acoustic modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying longitudinal acoustic phonons. The longitudinal acoustic-transverse optic anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type.

Original languageEnglish
Pages (from-to)614-619
Number of pages6
JournalNature Materials
Volume10
Issue number8
DOIs
StatePublished - Aug 2011

Funding

We thank M. E. Hagen, J. L. Robertson and S. E. Nagler for discussions. The neutron scattering and theory work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, as part of the S3TEC Energy Frontier Research Center, DOE DESC0001299. The Research at Oak Ridge National Laboratory’s Spallation Neutron Source and High Flux Isotope Reactor was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE. B.C.S., A.F.M. and M.A.M. acknowledge support from the US DOE, Basic Energy Sciences, Materials Sciences and Engineering Division.

FundersFunder number
S3TEC Energy Frontier Research CenterDESC0001299
Scientific User Facilities Division
U.S. Department of Energy
Basic Energy Sciences
Oak Ridge National Laboratory
Division of Materials Sciences and Engineering

    Fingerprint

    Dive into the research topics of 'Giant anharmonic phonon scattering in PbTe'. Together they form a unique fingerprint.

    Cite this