GeO2-SnCoC composite anode material for lithium-ion batteries

Bo Liu, Ali Abouimrane, Mahalingam Balasubramanian, Yang Ren, Khalil Amine

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Current methods for extending the cycle life of volume-expanded anode materials for lithium-ion batteries mainly focus on development of nanosize three-dimensional structures and composite materials. We propose a novel anode material of GeO2-Sn30Co30C40 that is synthesized by high energy ball milling (SPEX). This material depends on the nanosized and composite concept, which combines the advantageous properties of Sn-Co-C (long cycle life) and GeO2 (high capacity). The composite anode shows a reversible capacity over 800 mAh/g with good capacity retention. Furthermore, the first-cycle Coulombic efficiency is 80%, much higher than the 34.6% obtained for pure GeO2. Pair distribution function measurements indicated the reversible reaction of GeO2 and SnO2, which is the key factor in the improved Coulombic efficiency. This reversibility can be explained by the catalytic role of Co3Ge2 phase, which facilities the conversion reactions of metal oxides and acts as an electronic conductive component for the composite anode.

Original languageEnglish
Pages (from-to)3960-3967
Number of pages8
JournalJournal of Physical Chemistry C
Volume118
Issue number8
DOIs
StatePublished - Feb 27 2014

Fingerprint

Dive into the research topics of 'GeO2-SnCoC composite anode material for lithium-ion batteries'. Together they form a unique fingerprint.

Cite this