Geomechanical evaluation of natural shear fractures in the EGS Collab experiment 1 test bed

L. P. Frash, N. J. Welch, J. W. Carey, J. Ajo-Franklin, S. J. Bauer, T. Baumgartner, K. Beckers, D. Blankenship, A. Bonneville, L. Boyd, S. T. Brown, J. A. Burghardt, T. Chen, Y. Chen, K. Condon, P. J. Cook, P. F. Dobson, T. Doe, C. A. Doughty, D. ElsworthJ. Feldman, A. Foris, Z. Frone, P. Fu, K. Gao, A. Ghassemi, H. Gudmundsdottir, Y. Guglielmi, G. Guthrie, B. Haimson, A. Hawkins, J. Heise, C. G. Herrick, M. Horn, R. N. Horne, J. Horner, M. Hu, H. Huang, L. Huang, K. Im, M. Ingraham, T. C. Johnson, B. Johnston, S. Karra, K. Kim, D. K. King, T. Kneafsey, H. Knox, J. Knox, D. Kumar, K. Kutun, M. Lee, K. Li, R. Lopez, M. Maceira, N. Makedonska, C. Marone, E. Mattson, M. W. McClure, J. McLennan, T. McLing, R. J. Mellors, E. Metcalfe, J. Miskimins, J. P. Morris, S. Nakagawa, G. Neupane, G. Newman, A. Nieto, C. M. Oldenburg, W. Pan, R. Pawar, P. Petrov, B. Pietzyk, R. Podgorney, Y. Polsky, S. Porse, S. Richard, B. Q. Roberts, M. Robertson, W. Roggenthen, J. Rutqvist, D. Rynders, H. Santos-Villalobos, M. Schoenball, P. Schwering, V. Sesetty, A. Singh, M. M. Smith, H. Sone, C. E. Strickland, J. Su, C. Ulrich, N. Uzunlar, A. Vachaparampil, C. A. Valladao, W. Vandermeer, G. Vandine, D. Vardiman, V. R. Vermeul, J. L. Wagoner, H. F. Wang, J. Weers, J. White, M. D. White, P. Winterfeld, T. Wood, H. Wu, Y. S. Wu, Y. Wu, Y. Zhang, Y. Q. Zhang, J. Zhou, Q. Zhou, M. D. Zoback

Research output: Contribution to conferencePaperpeer-review

8 Scopus citations

Abstract

Natural fractures can have a significant influence on hydraulic stimulation. One must estimate the peak and residual geomechanical strengths, hydraulic conductivity, and in-situ stress state for the exiting natural fractures in a site in order to identify those natural fractures that are prone to hydraulic opening and/or shear. We apply a triaxial direct-shear method to measure these fracture properties in the Poorman’s schist for the EGS Collab project’s Experiment 1 test bed at the Sanford Underground Research Facility. In addition, we measure rock matrix density, matrix permeability, and acoustic velocity anisotropy. Using this data, we identify that south-east striking foliation-parallel fractures in this test bed are vulnerable to shear stimulation and can be hydrosheared at in-situ stress conditions. However, natural infilled fractures which are relatively easy to locate and are ubiquitous at the site were found to be too strong and high-friction for hydroshearing, with exception for those parallel to the foliation of the rock.

Original languageEnglish
StatePublished - Jan 1 2019
Event53rd U.S. Rock Mechanics/Geomechanics Symposium - Brooklyn, United States
Duration: Jun 23 2019Jun 26 2019

Conference

Conference53rd U.S. Rock Mechanics/Geomechanics Symposium
Country/TerritoryUnited States
CityBrooklyn
Period06/23/1906/26/19

Funding

This work is supported by Department of Energy (DOE) Basic Energy Sciences under Contract No. DE-AC52-06NA25396. The EGS Collab work in this study is supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Office (GTO) under Contract No. DE-AC52-06NA25396 with Los Alamos National Laboratory, led by Contract No. DEAC02-05CH11231 with Lawrence Berkeley National Laboratory. We also would like to acknowledge support from E-6 at Los Alamos National Laboratory who provided the computed tomography equipment and RECON software for microtomography reconstruction. Research supporting this work took place in whole or in part at the Sanford Underground Research Facility in Lead, South Dakota. The assistance of the Sanford Underground Research Facility and its personnel in providing physical access and general logistical and technical support is gratefully acknowledged. LA-UR-19-20664.

Fingerprint

Dive into the research topics of 'Geomechanical evaluation of natural shear fractures in the EGS Collab experiment 1 test bed'. Together they form a unique fingerprint.

Cite this