TY - JOUR
T1 - Genome resequencing reveals multiscale geographic structure and extensive linkage disequilibrium in the forest tree Populus trichocarpa
AU - Slavov, Gancho T.
AU - Difazio, Stephen P.
AU - Martin, Joel
AU - Schackwitz, Wendy
AU - Muchero, Wellington
AU - Rodgers-Melnick, Eli
AU - Lipphardt, Mindie F.
AU - Pennacchio, Christa P.
AU - Hellsten, Uffe
AU - Pennacchio, Len A.
AU - Gunter, Lee E.
AU - Ranjan, Priya
AU - Vining, Kelly
AU - Pomraning, Kyle R.
AU - Wilhelm, Larry J.
AU - Pellegrini, Matteo
AU - Mockler, Todd C.
AU - Freitag, Michael
AU - Geraldes, Armando
AU - El-Kassaby, Yousry A.
AU - Mansfield, Shawn D.
AU - Cronk, Quentin C.B.
AU - Douglas, Carl J.
AU - Strauss, Steven H.
AU - Rokhsar, Dan
AU - Tuskan, Gerald A.
PY - 2012/11
Y1 - 2012/11
N2 - Plant population genomics informs evolutionary biology, breeding, conservation and bioenergy feedstock development. For example, the detection of reliable phenotype-genotype associations and molecular signatures of selection requires a detailed knowledge about genome-wide patterns of allele frequency variation, linkage disequilibrium and recombination. • We resequenced 16 genomes of the model tree Populus trichocarpa and genotyped 120 trees from 10 subpopulations using 29213 single-nucleotide polymorphisms. • Significant geographic differentiation was present at multiple spatial scales, and range-wide latitudinal allele frequency gradients were strikingly common across the genome. The decay of linkage disequilibrium with physical distance was slower than expected from previous studies in Populus, with r2 dropping below 0.2 within 3-6kb. Consistent with this, estimates of recent effective population size from linkage disequilibrium (Ne≈4000-6000) were remarkably low relative to the large census sizes of P. trichocarpa stands. Fine-scale rates of recombination varied widely across the genome, but were largely predictable on the basis of DNA sequence and methylation features. • Our results suggest that genetic drift has played a significant role in the recent evolutionary history of P. trichocarpa. Most importantly, the extensive linkage disequilibrium detected suggests that genome-wide association studies and genomic selection in undomesticated populations may be more feasible in Populus than previously assumed.
AB - Plant population genomics informs evolutionary biology, breeding, conservation and bioenergy feedstock development. For example, the detection of reliable phenotype-genotype associations and molecular signatures of selection requires a detailed knowledge about genome-wide patterns of allele frequency variation, linkage disequilibrium and recombination. • We resequenced 16 genomes of the model tree Populus trichocarpa and genotyped 120 trees from 10 subpopulations using 29213 single-nucleotide polymorphisms. • Significant geographic differentiation was present at multiple spatial scales, and range-wide latitudinal allele frequency gradients were strikingly common across the genome. The decay of linkage disequilibrium with physical distance was slower than expected from previous studies in Populus, with r2 dropping below 0.2 within 3-6kb. Consistent with this, estimates of recent effective population size from linkage disequilibrium (Ne≈4000-6000) were remarkably low relative to the large census sizes of P. trichocarpa stands. Fine-scale rates of recombination varied widely across the genome, but were largely predictable on the basis of DNA sequence and methylation features. • Our results suggest that genetic drift has played a significant role in the recent evolutionary history of P. trichocarpa. Most importantly, the extensive linkage disequilibrium detected suggests that genome-wide association studies and genomic selection in undomesticated populations may be more feasible in Populus than previously assumed.
KW - Allele frequency gradients
KW - Black cottonwood (Populus trichocarpa)
KW - Genome resequencing
KW - Linkage disequilibrium (LD)
KW - Population structure
KW - Recombination
UR - http://www.scopus.com/inward/record.url?scp=84867402003&partnerID=8YFLogxK
U2 - 10.1111/j.1469-8137.2012.04258.x
DO - 10.1111/j.1469-8137.2012.04258.x
M3 - Article
C2 - 22861491
AN - SCOPUS:84867402003
SN - 0028-646X
VL - 196
SP - 713
EP - 725
JO - New Phytologist
JF - New Phytologist
IS - 3
ER -