TY - GEN
T1 - Genetic programming for understanding cognitive biases that generate polarization in social networks
AU - Gunaratne, Chathika
AU - Patton, Robert
N1 - Publisher Copyright:
© 2022 Owner/Author.
PY - 2022/7/9
Y1 - 2022/7/9
N2 - Recent studies have applied agent-based models to infer human-interpretable explanations of individual-scale behaviors that generate macro-scale patterns in complex social systems. Genetic programming has proven to be an ideal explainable AI tool for this purpose, where primitives may be expressed in an interpretable fashion and assembled into agent rules. Evolutionary model discovery (EMD) is a tool that combines genetic programming and random forest feature importance analysis, to infer individual-scale, human-interpretable explanations from agent-based models. We deploy EMD to investigate the cognitive biases behind the emergence of ideological polarization within a population. An agent-based model is developed to simulate a social network, where agents are able to create or sever links with one another, and update an internal ideological stance based on their neighbors' stances. Agent rules govern these actions and constitute of cognitive biases. A set of 7 cognitive biases are included as genetic program primitives in the search for rules that generate hyper-polarization among the population of agents. We find that heterogeneity in cognitive biases is more likely to generate polarized social networks. Highly polarized social networks are likely to emerge when individuals with confirmation bias are exposed to those with either attentional bias, egocentric bias, or cognitive dissonance.
AB - Recent studies have applied agent-based models to infer human-interpretable explanations of individual-scale behaviors that generate macro-scale patterns in complex social systems. Genetic programming has proven to be an ideal explainable AI tool for this purpose, where primitives may be expressed in an interpretable fashion and assembled into agent rules. Evolutionary model discovery (EMD) is a tool that combines genetic programming and random forest feature importance analysis, to infer individual-scale, human-interpretable explanations from agent-based models. We deploy EMD to investigate the cognitive biases behind the emergence of ideological polarization within a population. An agent-based model is developed to simulate a social network, where agents are able to create or sever links with one another, and update an internal ideological stance based on their neighbors' stances. Agent rules govern these actions and constitute of cognitive biases. A set of 7 cognitive biases are included as genetic program primitives in the search for rules that generate hyper-polarization among the population of agents. We find that heterogeneity in cognitive biases is more likely to generate polarized social networks. Highly polarized social networks are likely to emerge when individuals with confirmation bias are exposed to those with either attentional bias, egocentric bias, or cognitive dissonance.
KW - agent-based
KW - cognitive bias
KW - genetic programming
KW - polarization
KW - social network
UR - http://www.scopus.com/inward/record.url?scp=85136323287&partnerID=8YFLogxK
U2 - 10.1145/3520304.3529069
DO - 10.1145/3520304.3529069
M3 - Conference contribution
AN - SCOPUS:85136323287
T3 - GECCO 2022 Companion - Proceedings of the 2022 Genetic and Evolutionary Computation Conference
SP - 546
EP - 549
BT - GECCO 2022 Companion - Proceedings of the 2022 Genetic and Evolutionary Computation Conference
PB - Association for Computing Machinery, Inc
T2 - 2022 Genetic and Evolutionary Computation Conference, GECCO 2022
Y2 - 9 July 2022 through 13 July 2022
ER -