Abstract
Incorporating microbial processes into soil biogeochemical models has received growing interest. However, determining the parameters that govern microbially driven biogeochemical processes typically requires case-specific model calibration in various soil and ecosystem types. Here each case refers to an independent and individual experimental unit subjected to repeated measurements. Using the Microbial-ENzyme Decomposition model, this study aimed to test whether a common set of microbially-relevant parameters (i.e., generalized parameters) could be obtained across multiple cases based on a two-year incubation experiment in which soil samples of four distinct soil series (i.e., Coland, Kesswick, Westmoreland, and Etowah) collected from forest and grassland were subjected to cellulose or no cellulose amendment. Results showed that a common set of parameters controlling microbial growth and maintenance as well as extracellular enzyme production and turnover could be generalized at the soil series level but not land cover type. This indicates that microbial model developments need to prioritize soil series type over plant functional types when implemented across various sites. This study also suggests that, in addition to heterotrophic respiration and microbial biomass data, extracellular enzyme data sets are needed to achieve reliable microbial-relevant parameters for large-scale soil model projections.
| Original language | English |
|---|---|
| Article number | e2023JG007825 |
| Journal | Journal of Geophysical Research: Biogeosciences |
| Volume | 129 |
| Issue number | 4 |
| DOIs | |
| State | Published - Apr 2024 |
Funding
We gratefully acknowledge the financial support from the U.S. National Science Foundation HBCU-EiR (No. 1900885), the DOE\u2212RDPP (DE-SC0023206), and the USDA NIFA Grant (No. 2021-67020-34933) to J. Li, the U.S. Department of Energy (DOE) Office of Biological and Environmental Research through the Oak Ridge National Laboratory (ORNL) Terrestrial Ecosystem Science Scientific Focus Area (M.A. Mayes and C.W. Schadt) and subcontracted to Tennessee State University (No. 4000148926), and the U.S. DOE, Office of Science, Genomic Science Program (Award Number DE-SC0020163 and DE-SC0023106) to J. Zhou. G. Wang at Wuhan University is supported by National Natural Science Foundation of China (No. 42371032). ORNL is managed by the University of Tennessee-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. DOE. We gratefully acknowledge the financial support from the U.S. National Science Foundation HBCU\u2010EiR (No. 1900885), the DOE\u2212RDPP (DE\u2010SC0023206), and the USDA NIFA Grant (No. 2021\u201067020\u201034933) to J. Li, the U.S. Department of Energy (DOE) Office of Biological and Environmental Research through the Oak Ridge National Laboratory (ORNL) Terrestrial Ecosystem Science Scientific Focus Area (M.A. Mayes and C.W. Schadt) and subcontracted to Tennessee State University (No. 4000148926), and the U.S. DOE, Office of Science, Genomic Science Program (Award Number DE\u2010SC0020163 and DE\u2010SC0023106) to J. Zhou. G. Wang at Wuhan University is supported by National Natural Science Foundation of China (No. 42371032). ORNL is managed by the University of Tennessee\u2010Battelle, LLC, under contract DE\u2010AC05\u201000OR22725 with the U.S. DOE.
Keywords
- generalized microbial parameters
- incubation experiment
- model-data integration
- soil carbon model
- soil series