TY - JOUR
T1 - Gate-enhanced exciton-phonon coupling in photocurrent of (6,5) single-walled carbon nanotube based visible sensing field effect transistor
AU - Park, Ki Hong
AU - Lee, Seung Hoon
AU - Toshimitsu, Fumiyuki
AU - Lee, Jihoon
AU - Park, Sung Heum
AU - Tsuyohiko, Fujigaya
AU - Jang, Jae Won
N1 - Publisher Copyright:
© 2018 Elsevier Ltd
PY - 2018/11
Y1 - 2018/11
N2 - A visible sensing field effect transistor (FET) with a channel length of 100 nm for individual (6,5) single-walled carbon nanotubes (SWCNTs) is fabricated via a selective sorting method using 9,9-dioctyfluorenyl-2,7-diyl–bipyridine (PFO–BPy) polymer. The FET of the (6,5) SWCNTs shows p-type behavior with hundreds of on-off ratios and on-state conductivity of 50 ± 4.0 (Ω m)−1. In addition, the photocurrent of the FET of the (6,5) SWCNTs in the visible range increases (maximum 200 times at 620 nm) with higher gate voltage. E22 transition and PFO-BPy transition are observed in the FET of the (6,5) SWCNTs without application of a gate voltage. Interestingly, exciton-phonon coupled E22 transition due to gate-doping (p-type), which has been reported in photoluminescence and absorption studies, is expected to occur in the photocurrent of the FET at negatively higher gate voltage (≤−4 V). In addition, the exciton-phonon coupled E22 transition is prominently observable when carrier concentration by gate doping becomes approximately two-hundred sixty times (260 ± 43) larger than carrier concentration without application of a gate voltage. This demonstration would be useful for the development of SWCNT-based visible sensors with gate control in the SWCNT devices.
AB - A visible sensing field effect transistor (FET) with a channel length of 100 nm for individual (6,5) single-walled carbon nanotubes (SWCNTs) is fabricated via a selective sorting method using 9,9-dioctyfluorenyl-2,7-diyl–bipyridine (PFO–BPy) polymer. The FET of the (6,5) SWCNTs shows p-type behavior with hundreds of on-off ratios and on-state conductivity of 50 ± 4.0 (Ω m)−1. In addition, the photocurrent of the FET of the (6,5) SWCNTs in the visible range increases (maximum 200 times at 620 nm) with higher gate voltage. E22 transition and PFO-BPy transition are observed in the FET of the (6,5) SWCNTs without application of a gate voltage. Interestingly, exciton-phonon coupled E22 transition due to gate-doping (p-type), which has been reported in photoluminescence and absorption studies, is expected to occur in the photocurrent of the FET at negatively higher gate voltage (≤−4 V). In addition, the exciton-phonon coupled E22 transition is prominently observable when carrier concentration by gate doping becomes approximately two-hundred sixty times (260 ± 43) larger than carrier concentration without application of a gate voltage. This demonstration would be useful for the development of SWCNT-based visible sensors with gate control in the SWCNT devices.
UR - http://www.scopus.com/inward/record.url?scp=85053208590&partnerID=8YFLogxK
U2 - 10.1016/j.carbon.2018.07.002
DO - 10.1016/j.carbon.2018.07.002
M3 - Article
AN - SCOPUS:85053208590
SN - 0008-6223
VL - 139
SP - 709
EP - 715
JO - Carbon
JF - Carbon
ER -