Gasoline compression ignition (GCI) on a light-duty multi-cylinder engine using a wide range of fuel reactivities & heavy fuel stratification

Adam B. Dempsey, Scott Curran, Robert Wagner, William Cannella, Andrew Ickes

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Many research studies have focused on utilizing gasoline in modern compression ignition engines to reduce emissions and improve efficiency. Collectively, this combustion mode has become known as gasoline compression ignition (GCI). One of the biggest challenges with GCI operation is maintaining control over the combustion process through the fuel injection strategy, such that the engine can be controlled on a cycle-by-cycle basis. Research studies have investigated a wide variety of GCI injection strategies (i.e., fuel stratification levels) to maintain control over the heat release rate while achieving low temperature combustion (LTC). This work shows that at loads relevant to light-duty engines, partial fuel stratification (PFS) with gasoline provides very little controllability over the timing of combustion. On the contrary, heavy fuel stratification (HFS) provides very linear and pronounced control over the timing of combustion. However, the HFS strategy has challenges achieving LTC operation due to the air handling burdens associated with the high EGR rates that are required to reduce NOx emissions to near zero levels. In this work, a wide variety of gasoline fuel reactivities (octane numbers ranging from <40 to 87) were investigated to understand the engine performance and emissions of HFS-GCI operation on a multi-cylinder light-duty engine. The results indicate that over an EGR sweep at 4 bar BMEP, the gasoline fuels can achieve LTC operation with ultra-low NOx and soot emissions, while conventional diesel combustion (CDC) is unable to simultaneously achieve low NOx and soot. At 10 bar BMEP, all the gasoline fuels were compared to diesel, but using mixing controlled combustion and not LTC.

Original languageEnglish
Title of host publicationASME 2020 Internal Combustion Engine Division Fall Technical Conference, ICEF 2020
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791884034
DOIs
StatePublished - 2021
EventASME 2020 Internal Combustion Engine Division Fall Technical Conference, ICEF 2020 - Virtual, Online
Duration: Nov 4 2020Nov 6 2020

Publication series

NameASME 2020 Internal Combustion Engine Division Fall Technical Conference, ICEF 2020

Conference

ConferenceASME 2020 Internal Combustion Engine Division Fall Technical Conference, ICEF 2020
CityVirtual, Online
Period11/4/2011/6/20

Funding

This research was supported by the DOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office and used resources at the National Transportation Research Center, a DOE-EERE User Facility at Oak Ridge National Laboratory. The authors would gratefully like to thank the U.S. DOE Vehicle Technologies Office Program Managers Kevin Stork and Gurpreet Singh for the support and guidance for this work.

FundersFunder number
DOE-EERE
U.S. Department of Energy
Office of Energy Efficiency and Renewable Energy
Oak Ridge National Laboratory

    Fingerprint

    Dive into the research topics of 'Gasoline compression ignition (GCI) on a light-duty multi-cylinder engine using a wide range of fuel reactivities & heavy fuel stratification'. Together they form a unique fingerprint.

    Cite this