GA-GPU: Extending a library-based global address spaceprogramming model for scalable heterogeneouscomputing systems

Vinod Tipparaju, Jeffrey S. Vetter

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Scalable heterogeneous computing (SHC) architectures are emerging as a response to new requirements for low cost, power efficiency, and high performance. For example, numerous contemporary HPC systems are using commodity Graphical Processing Units (GPU) to supplement traditional multicore processors. Yet scientists still face a number of challenges in utilizing SHC systems. First and foremost, they are forced to combine a number of programming models and then delicately optimize the data movement among these multiple programming systems on each architecture. In this paper, we investigate a new programming model for SHC systems that attempts to unify data access to the aggregate memory available in GPUs in the system. In particular, we extend the popular and easy to use Global Address Space (GAS) programming model to SHC systems. We explore multiple implementation options, and demonstrate our solution in the context of Global Arrays, a library based GAS model. We then evaluate these options in the context of kernels and applications, such as a scalable chemistry application: NWChem. Our results reveal that GA-GPU can offer considerable benefit to users in terms of programmability, and both our empirical results and performance model provide encouraging performance benefits for future systems that offer a tightly integrated memory system.

Original languageEnglish
Title of host publicationCF '12 - Proceedings of the ACM Computing Frontiers Conference
Pages53-63
Number of pages11
DOIs
StatePublished - 2012
EventACM Computing Frontiers Conference, CF '12 - Cagliari, Italy
Duration: May 15 2012May 17 2012

Publication series

NameCF '12 - Proceedings of the ACM Computing Frontiers Conference

Conference

ConferenceACM Computing Frontiers Conference, CF '12
Country/TerritoryItaly
CityCagliari
Period05/15/1205/17/12

Keywords

  • armci
  • ga
  • gas
  • global address space
  • global arrays
  • gpu
  • nwchem
  • pgas

Fingerprint

Dive into the research topics of 'GA-GPU: Extending a library-based global address spaceprogramming model for scalable heterogeneouscomputing systems'. Together they form a unique fingerprint.

Cite this