Fundamental issues of nanofluid behavior

Wesley C. Williams

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper will elucidate some of the behaviors of nanofluids other than the abnormal conductivity enhancement, which are of importance to the experimental and engineering use of nanofluids. Nanofluid is the common name of any sol colloid involving nanoscale (less than 100nm) sized particles dispersed within a base fluid. It has been shown previously that the dispersion of nano-particulate metallic oxides into water can increase thermal conductivity up to 30-40% over that of the base fluid and anomalously more than the mere weighed average of the colloid. There is a great potential for the use of nanofluids as a way to enhance fluid/thermal energy transfer systems. Due to the recentness of nanofluid science, there are still many issues which have not been fully investigated. This paper should act as a primer for the basic understanding of nanofluid behavior. Particle size and colloid stability are of key importance to the functionality of nanofluids. The pH and concentration/loading of nanofluids can alter the size of the nanoparticles and also the stability of the fluids. It will be shown through experiment and colloid theory the importance of these parameters. Furthermore, most of the existing literature uses volume percentage as the measure of particle loading, which can often be misleading. There will be discussion of this and other misleading ideas in nanofluid science.

Original languageEnglish
Title of host publicationFourteenth International Conference on Nuclear Engineering 2006, ICONE 14
DOIs
StatePublished - 2006
Externally publishedYes
EventFourteenth International Conference on Nuclear Engineering 2006, ICONE 14 - Miami, FL, United States
Duration: Jul 17 2006Jul 20 2006

Publication series

NameInternational Conference on Nuclear Engineering, Proceedings, ICONE
Volume2006

Conference

ConferenceFourteenth International Conference on Nuclear Engineering 2006, ICONE 14
Country/TerritoryUnited States
CityMiami, FL
Period07/17/0607/20/06

Keywords

  • Colloids
  • Enhanced heat transfer
  • Nanofluids
  • Thermal conductivity

Fingerprint

Dive into the research topics of 'Fundamental issues of nanofluid behavior'. Together they form a unique fingerprint.

Cite this