Abstract
Background: Cellulose is highly recalcitrant and thus requires a specialized suite of enzymes to solubilize it into fermentable sugars. In C. thermocellum, these extracellular enzymes are present as a highly active multi-component system known as the cellulosome. This study explores the expression of a critical C. thermocellum cellulosomal component in T. saccharolyticum as a step toward creating a thermophilic bacterium capable of consolidated bioprocessing by employing heterologously expressed cellulosomes. Results: We developed an inducible promoter system based on the native T. saccharolyticum xynA promoter, which was shown to be induced by xylan and xylose. The promoter was used to express the cellulosomal component cipA*, an engineered form of the wild-type cipA from C. thermocellum. Expression and localization to the supernatant were both verified for CipA*. When a ΔcipA mutant C. thermocellum strain was cultured with a CipA*-expressing T. saccharolyticum strain, hydrolysis and fermentation of 10 grams per liter SigmaCell 101, a highly crystalline cellulose, were observed. This trans-species complementation of a cipA deletion demonstrated the ability for CipA* to assemble a functional cellulosome. Conclusion: This study is the first example of an engineered thermophile heterologously expressing a structural component of a cellulosome. To achieve this goal we developed and tested an inducible promoter for controlled expression in T. saccharolyticum as well as a synthetic cipA. In addition, we demonstrate a high degree of hydrolysis (up to 93%) on microcrystalline cellulose.
Original language | English |
---|---|
Article number | 32 |
Journal | Biotechnology for Biofuels |
Volume | 6 |
Issue number | 1 |
DOIs | |
State | Published - 2013 |
Funding
We would like to thank Dr. Joe Shaw and Dr. Erin Wiswall of Mascoma Corporation for providing strains, plasmids, methodological training, and advice. We would like to thank Alicia Eve Ballok for critical reading of the manuscript. This research was supported by Mascoma Corporation, Lebanon NH, the Department of Energy under Award Number DE-FC36-07G017057, and by the BioEnergy Science Center (BESC), Oak Ridge National Laboratory. The BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.
Funders | Funder number |
---|---|
BioEnergy Science Center | |
Mascoma Corporation | |
U.S. Department of Energy Bioenergy Research Center | |
U.S. Department of Energy | DE-FC36-07G017057 |
Office of Science | |
Biological and Environmental Research | |
Oak Ridge National Laboratory |
Keywords
- Anaerobe
- Cellulosome
- Clostridium thermocellum
- Consolidated bioprocessing
- Ethanol
- Thermoanaerobacterium saccharolyticum
- Thermophile