From suppressed void growth to significant void swelling in NiCoFeCr complex concentrated solid-solution alloy

Zhe Fan, Tai ni Yang, Boopathy Kombaiah, Xing Wang, Philip D. Edmondson, Yuri N. Osetsky, Ke Jin, Chenyang Lu, Hongbin Bei, Lumin Wang, Karren L. More, William J. Weber, Yanwen Zhang

Research output: Contribution to journalArticlepeer-review

28 Scopus citations

Abstract

Void swelling can result in dimensional instability and undermine the safe operation of nuclear reactors. Current strategies to inhibit void swelling mainly focus on enhancing defect absorption and recombination by introducing high-density defect sinks. Complex concentrated solid-solution alloys (CSAs), including high-entropy alloys, can withstand severe radiation damage due to their inherent chemical complexity without interfaces. However, the underlying mechanisms for void suppression in CSAs are far from clear. In this research, we studied the void evolution with respect to irradiation depths, doses, and temperatures in equiatomic NiCoFeCr under 3 MeV Ni ion irradiations. At relatively low doses (16 and 54 displacements per atom, dpa), voids form mainly outside of the ion-damaged region, and void formation in the peak damage region is suppressed, leading to negligible swelling. However, with further increase of dose (86 up to 250 dpa), significant void growth occurs in the peak damage region and extended dislocation lines dominate instead of short dislocation lines and loops formed at lower doses. From 500 to 700 °C, the dislocation density decreases while dislocations grow. Although the overall void swelling increases dramatically from 500 to 580 °C at 54 dpa, void growth in the peak damage region is still suppressed. The transition from suppressed void growth to significant void swelling is attributed to dislocation evolution and local chemical inhomogeneity (enrichment of Fe/Cr in the matrix) at higher doses. Our study shows that controlling element diffusion and defect evolution through tuning chemical complexity can further enhance the swelling resistance of CSAs.

Original languageEnglish
Article number100603
JournalMaterialia
Volume9
DOIs
StatePublished - Mar 2020

Funding

Note of Copyright: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan ( http://energy.gov/downloads/doe-public-access-plan ). This work is supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy , Office of Science, Basic Energy Sciences under contract number DE-AC05-00OR22725 . Electron microscopy analyses were performed as part of a user proposal at ORNL's Center for Nanophase Materials Sciences (CNMS), a U.S. DOE Office of Science User Facility.

Keywords

  • Chemical inhomogeneity
  • Concentrated solid-solution alloys
  • Dose effect
  • Irradiation temperature
  • Void swelling

Fingerprint

Dive into the research topics of 'From suppressed void growth to significant void swelling in NiCoFeCr complex concentrated solid-solution alloy'. Together they form a unique fingerprint.

Cite this