Abstract
Since the advent of software-defined networking (SDN), Traffic Engineering (TE) has been highlighted as one of the key applications that can be achieved through software-controlled protocols (e.g. PCEP and MPLS). Being one of the most complex challenges in networking, TE problems involve difficult decisions such as allocating flows, either via splitting them among multiple paths or by using a reservation system, to minimize congestion. However, creating an optimized solution is cumbersome and difficult as traffic patterns vary and change with network scale, capacity, and demand. AI methods can help alleviate this by finding optimized TE solutions for the best network performance. SDN-based TE tools such as Teal, Hecate and more, use classification techniques or deep reinforcement learning to find optimal network TE solutions that are demonstrated in simulation. Routing control conducted via source routing tools, e.g., PolKA, can help dynamically divert network flows. In this paper, we propose a novel framework that leverages Hecate to practically demonstrate TE on a real network, collaborating with PolKA, a source routing tool. With real-time traffic statistics, Hecate uses this data to compute optimal paths that are then communicated to PolKA to allocate flows. Several contributions are made to show a practical implementation of how this framework is tested using an emulated ecosystem mimicking a real P4 testbed scenario. This work proves valuable for truly engineered self-driving networks helping translate theory to practice.
| Original language | English |
|---|---|
| Title of host publication | Proceedings of SC 2024-W |
| Subtitle of host publication | Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis |
| Publisher | Institute of Electrical and Electronics Engineers Inc. |
| Pages | 829-838 |
| Number of pages | 10 |
| ISBN (Electronic) | 9798350355543 |
| DOIs | |
| State | Published - 2024 |
| Event | 2024 Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC Workshops 2024 - Atlanta, United States Duration: Nov 17 2024 → Nov 22 2024 |
Publication series
| Name | Proceedings of SC 2024-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis |
|---|
Conference
| Conference | 2024 Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC Workshops 2024 |
|---|---|
| Country/Territory | United States |
| City | Atlanta |
| Period | 11/17/24 → 11/22/24 |
Funding
This work was supported by the U.S. DOE Office of Science, Office of Advanced Scientific Computing Research Early Career Grant "Large Scale Deep Learning for Intelligent Networks" award ERKJ435 hosted at Oak Ridge National Laboratory. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (https://www.energy.gov/downloads/doepublic- access-plan). Further, PolKA, is supported via Financial support from Brazilian agencies: CNPq, CAPES, FAPESP/MCTI/CGI.br, PORVIR-5G 20/05182-3, FAPES (94/2017, 281/2019, 515/2021, 284/2021, 06/2022, 1026/2022, 941/2022). CNPq fellows Dr. Martinello 306225/2020-4. SFI 13/RC/2077 p2 and 17/CDA/4760.
Keywords
- congestion minimization
- machine learning
- network optimization
- segment routing
- traffic engineering