Framework for Integrating Machine Learning Methods for Path-Aware Source Routing

Anees Al-Najjar, Domingos Paraiso, Mariam Kiran, Cristina Dominicini, Everson Borges, Rafael Guimaraes, Magnos Martinello, Harvey Newman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Since the advent of software-defined networking (SDN), Traffic Engineering (TE) has been highlighted as one of the key applications that can be achieved through software-controlled protocols (e.g. PCEP and MPLS). Being one of the most complex challenges in networking, TE problems involve difficult decisions such as allocating flows, either via splitting them among multiple paths or by using a reservation system, to minimize congestion. However, creating an optimized solution is cumbersome and difficult as traffic patterns vary and change with network scale, capacity, and demand. AI methods can help alleviate this by finding optimized TE solutions for the best network performance. SDN-based TE tools such as Teal, Hecate and more, use classification techniques or deep reinforcement learning to find optimal network TE solutions that are demonstrated in simulation. Routing control conducted via source routing tools, e.g., PolKA, can help dynamically divert network flows. In this paper, we propose a novel framework that leverages Hecate to practically demonstrate TE on a real network, collaborating with PolKA, a source routing tool. With real-time traffic statistics, Hecate uses this data to compute optimal paths that are then communicated to PolKA to allocate flows. Several contributions are made to show a practical implementation of how this framework is tested using an emulated ecosystem mimicking a real P4 testbed scenario. This work proves valuable for truly engineered self-driving networks helping translate theory to practice.

Original languageEnglish
Title of host publicationProceedings of SC 2024-W
Subtitle of host publicationWorkshops of the International Conference for High Performance Computing, Networking, Storage and Analysis
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages829-838
Number of pages10
ISBN (Electronic)9798350355543
DOIs
StatePublished - 2024
Event2024 Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC Workshops 2024 - Atlanta, United States
Duration: Nov 17 2024Nov 22 2024

Publication series

NameProceedings of SC 2024-W: Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis

Conference

Conference2024 Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC Workshops 2024
Country/TerritoryUnited States
CityAtlanta
Period11/17/2411/22/24

Keywords

  • congestion minimization
  • machine learning
  • network optimization
  • segment routing
  • traffic engineering

Fingerprint

Dive into the research topics of 'Framework for Integrating Machine Learning Methods for Path-Aware Source Routing'. Together they form a unique fingerprint.

Cite this